我正在尝试在亚马逊ec2上运行mapreduce任务。 我设置了所有配置参数,然后调用AmazonElasticMapReduce服务的runFlowJob方法。 我想知道有没有办法知道工作是否已经完成以及状态如何。 (我需要知道我何时可以从s3中获取mapreduce结果以进行进一步处理)
目前代码只是继续执行,因为对runJobFlow的调用是非阻塞的。
public void startMapReduceTask(String accessKey, String secretKey
,String eC2KeyPairName, String endPointURL, String jobName
,int numInstances, String instanceType, String placement
,String logDirName, String bucketName, String pigScriptName) {
log.info("Start running MapReduce");
// config.set
ClientConfiguration config = new ClientConfiguration();
AWSCredentials credentials = new BasicAWSCredentials(accessKey, secretKey);
AmazonElasticMapReduce service = new AmazonElasticMapReduceClient(credentials, config);
service.setEndpoint(endPointURL);
JobFlowInstancesConfig conf = new JobFlowInstancesConfig();
conf.setEc2KeyName(eC2KeyPairName);
conf.setInstanceCount(numInstances);
conf.setKeepJobFlowAliveWhenNoSteps(true);
conf.setMasterInstanceType(instanceType);
conf.setPlacement(new PlacementType(placement));
conf.setSlaveInstanceType(instanceType);
StepFactory stepFactory = new StepFactory();
StepConfig enableDebugging = new StepConfig()
.withName("Enable Debugging")
.withActionOnFailure("TERMINATE_JOB_FLOW")
.withHadoopJarStep(stepFactory.newEnableDebuggingStep());
StepConfig installPig = new StepConfig()
.withName("Install Pig")
.withActionOnFailure("TERMINATE_JOB_FLOW")
.withHadoopJarStep(stepFactory.newInstallPigStep());
StepConfig runPigScript = new StepConfig()
.withName("Run Pig Script")
.withActionOnFailure("TERMINATE_JOB_FLOW")
.withHadoopJarStep(stepFactory.newRunPigScriptStep("s3://" + bucketName + "/" + pigScriptName, ""));
RunJobFlowRequest request = new RunJobFlowRequest(jobName, conf)
.withSteps(enableDebugging, installPig, runPigScript)
.withLogUri("s3n://" + bucketName + "/" + logDirName);
try {
RunJobFlowResult res = service.runJobFlow(request);
log.info("Mapreduce job with id[" + res.getJobFlowId() + "] completed successfully");
} catch (Exception e) {
log.error("Caught Exception: ", e);
}
log.info("End running MapReduce");
}
public void startMapReduceTask(String accessKey, String secretKey
,String eC2KeyPairName, String endPointURL, String jobName
,int numInstances, String instanceType, String placement
,String logDirName, String bucketName, String pigScriptName) {
log.info("Start running MapReduce");
// config.set
ClientConfiguration config = new ClientConfiguration();
AWSCredentials credentials = new BasicAWSCredentials(accessKey, secretKey);
AmazonElasticMapReduce service = new AmazonElasticMapReduceClient(credentials, config);
service.setEndpoint(endPointURL);
JobFlowInstancesConfig conf = new JobFlowInstancesConfig();
conf.setEc2KeyName(eC2KeyPairName);
conf.setInstanceCount(numInstances);
conf.setKeepJobFlowAliveWhenNoSteps(true);
conf.setMasterInstanceType(instanceType);
conf.setPlacement(new PlacementType(placement));
conf.setSlaveInstanceType(instanceType);
StepFactory stepFactory = new StepFactory();
StepConfig enableDebugging = new StepConfig()
.withName("Enable Debugging")
.withActionOnFailure("TERMINATE_JOB_FLOW")
.withHadoopJarStep(stepFactory.newEnableDebuggingStep());
StepConfig installPig = new StepConfig()
.withName("Install Pig")
.withActionOnFailure("TERMINATE_JOB_FLOW")
.withHadoopJarStep(stepFactory.newInstallPigStep());
StepConfig runPigScript = new StepConfig()
.withName("Run Pig Script")
.withActionOnFailure("TERMINATE_JOB_FLOW")
.withHadoopJarStep(stepFactory.newRunPigScriptStep("s3://" + bucketName + "/" + pigScriptName, ""));
RunJobFlowRequest request = new RunJobFlowRequest(jobName, conf)
.withSteps(enableDebugging, installPig, runPigScript)
.withLogUri("s3n://" + bucketName + "/" + logDirName);
try {
RunJobFlowResult res = service.runJobFlow(request);
log.info("Mapreduce job with id[" + res.getJobFlowId() + "] completed successfully");
} catch (Exception e) {
log.error("Caught Exception: ", e);
}
log.info("End running MapReduce");
}
感谢,
阿维亚德
答案 0 :(得分:2)
来自AWS文档:
作业流完成后,群集将停止,HDFS分区将丢失。 为防止数据丢失,请配置作业流程的最后一步,以便在Amazon S3中存储结果。
接着说:
如果
JobFlowInstancesDetail : KeepJobFlowAliveWhenNoSteps
参数设置为TRUE
,则作业流程将转换为WAITING
状态,而不是在步骤完成后关闭。每个作业流程最多允许256步。
对于长时间运行的作业流程,我们建议您定期存储结果。
所以看起来没有办法知道什么时候完成。相反,您需要将数据保存为工作的一部分。