Tensorflow:如何从预测Tensor中检索信息?

时间:2018-06-26 14:49:45

标签: python tensorflow

我发现了一个用于语义分割目的的神经网络。网络工作正常,我输入了培训,验证和测试数据,并得到了输出(不同颜色的分段部分)。到这里为止,一切都OK。我正在将Keras与Tensorflow 1.7.0和GPU一起使用。 Python版本是3.5

我想要实现的是访问像素组(段),以便我可以获取其边界的图像坐标,即形成预测中以绿色显示的段X边界的点的阵列图片。

该怎么做?显然,我无法将完整的代码放在此处,但这是一个片段,我应该对其进行修改以实现我想要的功能:

我的评估功能中包含以下内容:

    def evaluate(model_file):
    net = load_model(model_file, custom_objects={'iou_metric': create_iou_metric(1 + len(PART_NAMES)),
                                                 'acc_metric': create_accuracy_metric(1 + len(PART_NAMES), output_mode='pixelwise_mean')})

    img_size = net.input_shape[1]
    image_filename = lambda fp: fp + '.jpg'
    d_test_x = TensorResize((img_size, img_size))(ImageSource(TEST_DATA, image_filename=image_filename))
    d_test_x = PixelwiseSubstract([103.93, 116.78, 123.68], use_lane_names=['X'])(d_test_x)
    d_test_pred = Predict(net)(d_test_x)
    d_test_pred.metadata['properties'] = ['background'] + PART_NAMES

    d_x, d_y = process_data(VALIDATION_DATA, img_size)
    d_x = PixelwiseSubstract([103.93, 116.78, 123.68], use_lane_names=['X'])(d_x)
    d_y = AddBackgroundMap(use_lane_names=['Y'])(d_y)

    d_train = Join()([d_x, d_y])
    print('losses:', net.evaluate_generator(d_train.batch_array_tuple_generator(batch_size=3), 3))

    # the tensor which needs to be modified
    pred_y = Predict(net)(d_x)
    Visualize(('slices', 'labels'))(Join()([d_test_x, d_test_pred]))
    Visualize(('slices', 'labels', 'labels'))(Join()([d_x, pred_y, d_y]))

关于Predict函数,以下是代码段:

或者,我发现通过使用以下内容,可以访问张量:

#    for sample_img, in d_x.batch_array_tuple_generator(batch_size=3, n_samples=5):
#        aa = net.predict(sample_img)
#        indexes = np.argmax(aa,axis=3)
#        print(indexes)
#        import pdb
#        pdb.set_trace()

但是我不知道它是如何工作的,我从来没有使用过pdb,因此不知道。

如果有人想同时看到培训功能,则为:

def train(model_name='refine_res', k=3, recompute=False, img_size=224,
        epochs=10, train_decoder_only=False, augmentation_boost=2, learning_rate=0.001,
        opt='rmsprop'):

    print("Traning on: " + str(PART_NAMES))
    print("In Total: " + str(1 + len(PART_NAMES)) + " parts.")

    metrics = [create_iou_metric(1 + len(PART_NAMES)),
               create_accuracy_metric(1 + len(PART_NAMES), output_mode='pixelwise_mean')]

    if model_name == 'dummy':
        net = build_dummy((224, 224, 3), 1 + len(PART_NAMES))  # 1+ because background class
    elif model_name == 'refine_res':
        net = build_resnet50_upconv_refine((img_size, img_size, 3), 1 + len(PART_NAMES), k=k, optimizer=opt, learning_rate=learning_rate, softmax_top=True,
                                           objective_function=categorical_crossentropy,
                                           metrics=metrics, train_full=not train_decoder_only)
    elif model_name == 'vgg_upconv':
        net = build_vgg_upconv((img_size, img_size, 3), 1 + len(PART_NAMES), k=k, optimizer=opt, learning_rate=learning_rate, softmax_top=True,
                               objective_function=categorical_crossentropy,metrics=metrics, train_full=not train_decoder_only)
    else:
        net = load_model(model_name)

    d_x, d_y = process_data(TRAINING_DATA, img_size, recompute=recompute, ignore_cache=False)
    d = Join()([d_x, d_y])

    # create more samples by rotating top view images and translating
    images_to_be_rotated = {}
    factor = 5
    for root, dirs, files in os.walk(TRAINING_DATA, topdown=False):
        for name in dirs:
            format = str(name + '/' + name)  # construct the format of foldername/foldername
            images_to_be_rotated.update({format: factor})

    d_aug = ImageAugmentation(factor_per_filepath_prefix=images_to_be_rotated, rotation_variance=90, recalc_base_seed=True)(d)
    d_aug = ImageAugmentation(factor=3 * augmentation_boost, color_interval=0.03, shift_interval=0.1, contrast=0.4,  recalc_base_seed=True, use_lane_names=['X'])(d_aug)
    d_aug = ImageAugmentation(factor=2, rotation_variance=20, recalc_base_seed=True)(d_aug)
    d_aug = ImageAugmentation(factor=7 * augmentation_boost, rotation_variance=10, translation=35, mirror=True, recalc_base_seed=True)(d_aug)

    # apply augmentation on the images of the training dataset only

    d_aug = AddBackgroundMap(use_lane_names=['Y'])(d_aug)
    d_aug.metadata['properties'] = ['background'] + PART_NAMES

    # substract mean and shuffle
    d_aug = Shuffle()(d_aug)
    d_aug, d_val = RandomSplit(0.8)(d_aug)
    d_aug = PixelwiseSubstract([103.93, 116.78, 123.68], use_lane_names=['X'])(d_aug)
    d_val = PixelwiseSubstract([103.93, 116.78, 123.68], use_lane_names=['X'])(d_val)

    # Visualize()(d_aug)

    d_aug.configure()
    d_val.configure()
    print('training size:', d_aug.size())
    batch_size = 4

    callbacks = []
    #callbacks += [EarlyStopping(patience=10)]
    callbacks += [ModelCheckpoint(filepath="trained_models/"+model_name + '.hdf5', monitor='val_iou_metric', mode='max',
                                  verbose=1, save_best_only=True)]
    callbacks += [CSVLogger('logs/'+model_name + '.csv')]
    history = History()
    callbacks += [history]

    # sess = K.get_session()
    # sess.run(tf.initialize_local_variables())

    net.fit_generator(d_aug.batch_array_tuple_generator(batch_size=batch_size, shuffle_samples=True), steps_per_epoch=d_aug.size() // batch_size,
                      validation_data=d_val.batch_array_tuple_generator(batch_size=batch_size), validation_steps=d_val.size() // batch_size,
                      callbacks=callbacks, epochs=epochs)

    return {k: (max(history.history[k]), min(history.history[k])) for k in history.history.keys()}

1 个答案:

答案 0 :(得分:3)

对于细分任务,考虑到您的批次是一张图像,则为图像中的每个像素分配了属于一个类的概率。假设您有5个类别,并且图像有784个像素(28x28),您将从net.predict形状为(784,5)的数组中获得784个像素中的每个像素都分配有5个概率值,属于这些类别。当您执行np.argmax(aa,axis=3)时,将获得形状为(784,1)的每个像素的最高概率索引,然后可以将其重塑为28x28 indexes.reshape(28,28)的形状,并获得了预测的掩码。 / p>

将问题简化为7x7尺寸和4个看起来像的类(0-3)

array([[2, 1, 0, 1, 2, 3, 1],
   [3, 1, 1, 0, 3, 0, 0],
   [3, 3, 2, 2, 0, 3, 1],
   [1, 1, 0, 3, 1, 3, 1],
   [0, 0, 0, 3, 3, 1, 0],
   [1, 2, 3, 0, 1, 2, 3],
   [0, 2, 1, 1, 0, 1, 3]])

您要提取模型预测为1的索引

segment_1=np.where(indexes==1)

由于其二维数组,segment_1将是2x7数组,其中第一个数组是行索引,第二个数组将是列值。

(array([0, 0, 0, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 6, 6, 6]), array([1, 3, 6, 1, 2, 6, 0, 1, 4, 6, 5, 0, 4, 2, 3, 5]))

看着第一和第二个数组中的第一个数字,0 and 1指向indexes中的位置

您可以像

那样提取其值。
indexes[segment_1]
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

然后继续进行您想获得的第二堂课,让我们说2

segment_2=np.where(image==2)
segment_2
(array([0, 0, 2, 2, 5, 5, 6]), array([0, 4, 2, 3, 1, 5, 1]))

,如果您想自己获得每个类。 您可以为每个类别创建indexes的副本,共class_1=indexes共4副本,并将不等于1的任何值设置为零。class_1[class_1!=1]=0并获得类似的结果

array([[0, 1, 0, 1, 0, 0, 1],
   [0, 1, 1, 0, 0, 0, 0],
   [0, 0, 0, 0, 0, 0, 1],
   [1, 1, 0, 0, 1, 0, 1],
   [0, 0, 0, 0, 0, 1, 0],
   [1, 0, 0, 0, 1, 0, 0],
   [0, 0, 1, 1, 0, 1, 0]])

对于眼睛来说,您可能认为有很多东西,但是从此示例中,您可以看出每个段没有清晰的轮廓。我能想到的唯一方法是在行中循环图像并记录值更改的位置并在列中进行相同的操作。 我不确定这是否是理想的情况。 希望我能解决您的部分问题。  PDB只是一个调试包,可让您逐步执行代码