如何在深度Q学习DQN代码中发送状态记忆而不是一个状态

时间:2018-06-26 09:21:17

标签: arraylist deep-learning reinforcement-learning keras-layer

这是DQN的主要代码,唯一的区别是我的状态有5个变量来代替一个state=[var1 var2 var3 var4 var5],我需要向状态添加内存,我的意思是state[i]被替换为

state[i-k+1]...state[i]

为此需要进行哪些必要的更改?我建立模型,我将输入数乘以k,但我不知道在哪里调用该函数(build_model)?因为我看到

的错误
    agent.replay(batch_size)


File "modgame.py", , in replay
    np.argmax(self.model.predict(next_state)[0])
  File "C:\Users\L\Anaconda30\envs\tensorflow\lib\site-packages\keras\models.py", line 1064, in predict
    steps=steps)
  File "C:\Users\L\Anaconda30\envs\tensorflow\lib\site-packages\keras\engine\training.py", line 1817, in predict
    check_batch_axis=False)
  File "C:\Users\L\Anaconda30\envs\tensorflow\lib\site-packages\keras\engine\training.py", line 123, in _standardize_input_data
    str(data_shape))
ValueError: Error when checking : expected dense_1_input to have shape (30,) but got array with shape (5,)

我进行了一些更改,但还不够!每个状态也是我的代码中的5k=6的组合,因此我应该输入5*6,但这仅仅是5

# -*- coding: utf-8 -*-
import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam

EPISODES = 1000


class DQNAgent:
    def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size
        self.memory = deque(maxlen=2000)
        self.gamma = 0.95    # discount rate
        self.epsilon = 1.0  # exploration rate
        self.epsilon_min = 0.01
        self.epsilon_decay = 0.995
        self.learning_rate = 0.001
        self.model = self._build_model()

    def _build_model(self):
        # Neural Net for Deep-Q learning Model
        model = Sequential()
        model.add(Dense(24, input_dim=self.state_size, activation='relu'))
        model.add(Dense(24, activation='relu'))
        model.add(Dense(self.action_size, activation='linear'))
        model.compile(loss='mse',
                      optimizer=Adam(lr=self.learning_rate))
        return model

    def remember(self, state, action, reward, next_state, done):
        self.memory.append((state, action, reward, next_state, done))

    def act(self, state):
        if np.random.rand() <= self.epsilon:
            return random.randrange(self.action_size)
        act_values = self.model.predict(state)
        return np.argmax(act_values[0])  # returns action

    def replay(self, batch_size):
        minibatch = random.sample(self.memory, batch_size)
        for state, action, reward, next_state, done in minibatch:
            target = reward
            if not done:
                target = (reward + self.gamma *
                          np.amax(self.model.predict(next_state)[0]))
            target_f = self.model.predict(state)
            target_f[0][action] = target
            self.model.fit(state, target_f, epochs=1, verbose=0)
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

    def load(self, name):
        self.model.load_weights(name)

    def save(self, name):
        self.model.save_weights(name)


if __name__ == "__main__":
    env = gym.make('CartPole-v1')
    state_size = env.observation_space.shape[0]
    action_size = env.action_space.n
    agent = DQNAgent(state_size, action_size)
    # agent.load("./save/cartpole-dqn.h5")
    done = False
    batch_size = 32

    for e in range(EPISODES):
        state = env.reset()
        state = np.reshape(state, [1, state_size])
        for time in range(500):
            # env.render()
            action = agent.act(state)
            next_state, reward, done, _ = env.step(action)
            reward = reward if not done else -10
            next_state = np.reshape(next_state, [1, state_size])
            agent.remember(state, action, reward, next_state, done)
            state = next_state
            if done:
                print("episode: {}/{}, score: {}, e: {:.2}"
                      .format(e, EPISODES, time, agent.epsilon))
                break
        if len(agent.memory) > batch_size:
            agent.replay(batch_size)
        # if e % 10 == 0:
        #     agent.save("./save/cartpole-dqn.h5")

0 个答案:

没有答案