我知道在我的数据response_bytes列中没有NaN值,因为当我运行:data[data.response_bytes.isna()].count()
时,结果为0。
然后我平均跑2分钟,然后转头,我得到NaN:
print(data.reset_index().set_index('time').resample('2min').mean().head())
index identity user http_code response_bytes unknown
time
2018-01-31 09:26:00 0.5 NaN NaN 200.0 264.0 NaN
2018-01-31 09:28:00 NaN NaN NaN NaN NaN NaN
2018-01-31 09:30:00 NaN NaN NaN NaN NaN NaN
2018-01-31 09:32:00 NaN NaN NaN NaN NaN NaN
2018-01-31 09:34:00 NaN NaN NaN NaN NaN NaN
为什么响应字节时间存储区具有NaN值?
我想尝试一下,并了解在熊猫中如何进行时间限制。所以我使用日志文件:http://www.cs.tufts.edu/comp/116/access.log
作为输入数据,然后将其加载到pandas DataFrame中,然后应用时间段2分钟(这是我一生中的第一次)并运行mean(),我没想到在 response_bytes 列中看到所有NaN,因为所有值都不是NaN。
这是我的完整代码:
import urllib.request
import pandas as pd
import re
from datetime import datetime
import pytz
pd.set_option('max_columns',10)
def parse_str(x):
"""
Returns the string delimited by two characters.
Example:
`>>> parse_str('[my string]')`
`'my string'`
"""
return x[1:-1]
def parse_datetime(x):
'''
Parses datetime with timezone formatted as:
`[day/month/year:hour:minute:second zone]`
Example:
`>>> parse_datetime('13/Nov/2015:11:45:42 +0000')`
`datetime.datetime(2015, 11, 3, 11, 45, 4, tzinfo=<UTC>)`
Due to problems parsing the timezone (`%z`) with `datetime.strptime`, the
timezone will be obtained using the `pytz` library.
'''
dt = datetime.strptime(x[1:-7], '%d/%b/%Y:%H:%M:%S')
dt_tz = int(x[-6:-3])*60+int(x[-3:-1])
return dt.replace(tzinfo=pytz.FixedOffset(dt_tz))
# data = pd.read_csv(StringIO(accesslog))
url = "http://www.cs.tufts.edu/comp/116/access.log"
accesslog = urllib.request.urlopen(url).read().decode('utf-8')
fields = ['host', 'identity', 'user', 'time_part1', 'time_part2', 'cmd_path_proto',
'http_code', 'response_bytes', 'referer', 'user_agent', 'unknown']
data = pd.read_csv(url, sep=' ', header=None, names=fields, na_values=['-'])
# Panda's parser mistakenly splits the date into two columns, so we must concatenate them
time = data.time_part1 + data.time_part2
time_trimmed = time.map(lambda s: re.split('[-+]', s.strip('[]'))[0]) # Drop the timezone for simplicity
data['time'] = pd.to_datetime(time_trimmed, format='%d/%b/%Y:%H:%M:%S')
data.head()
print(data.reset_index().set_index('time').resample('2min').mean().head())
我期望response_bytes列的均值的时间间隔不是NaN。
答案 0 :(得分:1)
这是预期的行为,因为resampling
转换为固定的时间间隔,因此如果没有样本,您将得到MAIL_DRIVER=smtp
MAIL_HOST=shared_host_name
MAIL_PORT=587
MAIL_USERNAME=mail@sharedhost.com
MAIL_PASSWORD=password
MAIL_ENCRYPTION=tls
。
因此,这意味着大约2分钟的迭代之间没有日期时间,例如NaN
和2018-01-31 09:28:00
,因此2018-01-31 09:30:00
无法计数并获得mean
。
NaN