我有一个文件,该文件包含以下内容:
0: 10 51 03 37 7F 43 82 99 45 3F E7 35 3A A8 80 B9 .text ? etc # text
10: 3D 3F F4 49 F8 9A 7A 85 03 40 8A C8 46 DE 0A 1A . -@ =! ETC # text
30: .......................................................
40: ...........................................10 03
Repeat next instant
10 51 ................................................................
............................................ 10 03
这是一条消息,其中10和51表示特定消息的开始,而10 03表示消息的结束。 10表示0字节位置,51表示1字节位置并继续。
我的目的是读取5-8字节位置的十六进制数据,并在每个瞬间将其转换为float,将9-16位置字节转换为两倍
到目前为止,我的实现只读取前31个十六进制数据。
import struct
with open("RawData.log",'rb') as fin:
data1 = ["{:02x}".format(ord(c)) for c in fin.read()]
data2=''.join(data1)
#data=pd.DataFrame({'test':data1})
header = "51"
tail = "03"
# header_index = data2.index(header)
header_index=[i for i, s in enumerate(data1) if header in s]
footer_index = [i for i, s in enumerate(data1) if tail in s]
if header_index >= 0 and footer_index >= header_index:
body = data2[10:18]
print struct.unpack('!f',body.decode('hex'))[0]
#261.197418213 only 1 output not iterating for whole file. Similarly how to extract 9 to 16 byte position data to double for entire file.
如何读取整个文件,并在每次找到消息标头(10和51)时仅从十六进制数据中提取这2个字段
答案 0 :(得分:0)
这是一种在定界符之间提取数据并从文件中每条消息的前12个位置解压缩浮点和双精度的简单方法:
with open('RawData.log', 'rb') as f: # read data in binary format
bs = f.read()
prev = None
start = None
end = None
for i, b in enumerate(bs):
if prev == b'\x10' and b == b'\x51':
# match beginning of message
start = i + 1
if prev == b'\x10' and b == b'\x03':
# match end of message
end = i - 1
if start and end:
data = bs[start:end]
fmt = '!fd' # unpack a float and double, big-endian
flt, dble = struct.unpack(fmt, data[:12])
print flt, dble
# reset delimiter positions
start = None
end = None
prev = b