我试图了解OpenMDAO优化算法的局限性。特别是,我设置了以下简单示例:
from openmdao.api import Problem, ScipyOptimizeDriver, ExecComp, IndepVarComp, ExplicitComponent
class AddComp(ExplicitComponent):
def setup(self):
self.add_input("x")
self.add_input("y")
self.add_output("obj")
def compute(self, inputs, outputs):
outputs['obj'] = inputs["x"] + inputs["y"]
# build the model
prob = Problem()
indeps = prob.model.add_subsystem('indeps', IndepVarComp())
indeps.add_output('x', 3.0)
indeps.add_output('y', -4.0)
prob.model.add_subsystem("simple", AddComp())
prob.model.connect('indeps.x', 'simple.x')
prob.model.connect('indeps.y', 'simple.y')
# setup the optimization
prob.driver = ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.model.add_design_var('indeps.x', lower=-50, upper=50)
prob.model.add_design_var('indeps.y', lower=-50, upper=50)
prob.model.add_objective('simple.obj')
prob.setup()
prob.run_driver()
# minimum value
print(prob['simple.obj'])
# location of the minimum
print(prob['indeps.x'])
print(prob['indeps.y'])
打印输出为:
Optimization terminated successfully. (Exit mode 0)
Current function value: -1.0
Iterations: 1
Function evaluations: 1
Gradient evaluations: 1
Optimization Complete
-----------------------------------
[-1.]
[ 3.]
[-4.]
但是,最佳解决方案当然是x = y = -50。为什么找不到这种解决方案?
出于某种原因,我有一个想法,就是驾驶员应该找到凸问题的正确解决方案。但是我意识到这听起来像是求解器限制的粗略总结。有人可以指出用哪种方法可以解决什么问题的解释吗?
答案 0 :(得分:3)
这里发生的是OpenMDAO并未为优化程序计算目标梯度,因为您必须明确声明局部变量。
在组件的设置方法中添加以下内容将声明partials的常量值(在这种情况下,由于目标是输入的线性函数,因此我们不需要compute_partials方法,因此partials是常量)。
self.declare_partials(of='obj', wrt='x', val=1.0)
self.declare_partials(of='obj', wrt='y', val=1.0)
或者,您可以告诉OpenMDAO通过有限差分或复杂步骤来计算组件的所有部分:
self.declare_partials(of='*', wrt='*', method='cs')
其中方法是“ cs”或“ fd”之一。
通过该更改,可以找到预期的最佳值:
Optimization terminated successfully. (Exit mode 0)
Current function value: -99.99999999983521
Iterations: 7
Function evaluations: 7
Gradient evaluations: 7
Optimization Complete
-----------------------------------
[-100.]
[-50.]
[-50.]