带颜色条的圆形图

时间:2018-06-25 09:27:51

标签: python dataframe geometry colorbar scatter

我正在尝试使用彩条绘制圆形图,就像这样:

enter image description here

但是,彩条的最小值当前为1;我希望能够将其设置为0。

import pandas            as pd
import matplotlib.pyplot as plt
import matplotlib.cm     as cm
from sklearn import preprocessing

df = pd.DataFrame({'A':[1,2,1,2,3,4,2,1,4], 
                   'B':[3,1,5,1,2,4,5,2,3], 
                   'C':[4,2,4,1,3,3,4,2,1]})

# set the Colour
x              = df.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled       = min_max_scaler.fit_transform(x)
df_S           = pd.DataFrame(x_scaled)
c1             = df['C']
c2             = df_S[2]
colors         = [cm.jet(color) for color in c2]

# Graph
plt.figure()
ax = plt.gca()
for a, b, color in zip(df['A'], df['B'], colors):
    circle = plt.Circle((a, 
                         b), 
                         1, # Size
                         color=color, 
                         lw=5, 
                         fill=False)
    ax.add_artist(circle)

plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel('A')
plt.ylabel('B')
ax.set_aspect(1.0)

sc = plt.scatter(df['A'], 
                 df['B'], 
                 s=0, 
                 c=c1, 
                 cmap='jet', 
                 facecolors='none')
plt.grid()

cbar = plt.colorbar(sc)
cbar.set_label('C', rotation=270, labelpad=10)

plt.show()

对此原始问题的信用: Plotting circles with no fill, colour & size depending on variables using scatter

3 个答案:

答案 0 :(得分:1)

只需在vmin中添加vmaxplt.scatter()参数。

sc = plt.scatter(df['A'], 
                 df['B'], 
                 s=0, 
                 c=c1, 
                 cmap='jet',
                 vmin = 0,
                 vmax = 4,
                 facecolors='none')

enter image description here

如果要基于颜色图调整圆形的颜色,则需要使用Normalize(vmin,vmax)并将颜色图以标准化后的值传递给圆形图。

代码如下:

import pandas            as pd
import matplotlib.pyplot as plt
import matplotlib.cm     as cm
from sklearn import preprocessing
from matplotlib.colors import Normalize


df = pd.DataFrame({'A':[1,2,1,2,3,4,2,1,4], 
                   'B':[3,1,5,1,2,4,5,2,3], 
                   'C':[4,2,4,1,3,3,4,2,1]})

# set the Colour
x              = df.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled       = min_max_scaler.fit_transform(x)
df_S           = pd.DataFrame(x_scaled)
c1             = df['C']
c2             = df_S[2]
cmap = cm.jet
vmin = 0
vmax = 5 #your max Y is 5, not 4
norm = Normalize(vmin, vmax)

# Graph
plt.figure()
ax = plt.gca()
for a, b in zip(df['A'], df['B']):
    circle = plt.Circle((a, 
                         b), 
                         1, # Size
                         color=cmap(norm(b)), 
                         lw=5, 
                         fill=False)
    ax.add_artist(circle)

plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel('A')
plt.ylabel('B')
ax.set_aspect(1.0)

sc = plt.scatter(df['A'], 
                 df['B'], 
                 s=0, 
                 c=c1, 
                 cmap='jet',
                 vmin = vmin,
                 vmax = vmax,
                 facecolors='none')
plt.grid()

cbar = plt.colorbar(sc)
cbar.set_label('C', rotation=270, labelpad=10)

plt.show()

enter image description here

答案 1 :(得分:0)

您可以摆弄extend parameters以获取此输出:

fraction = 1/3 # colorbar axis min is 1, max is 4, steps are 0.5 
               # => 2*(1/6) to get to 0
cbar = plt.colorbar(sc, extend="min", extendfrac=fraction, extendrect=True)

enter image description here

但是该扩展名不会被标记。

答案 2 :(得分:0)

感谢alec_djinn这个答案可以做到:

  • 设置颜色条的最小值和最大值
  • 将圆圈(变量C)的颜色控制在与颜色条相同的范围内

enter image description here

import pandas            as pd
import matplotlib.pyplot as plt
import matplotlib.cm     as cm
from sklearn import preprocessing
from matplotlib.colors import Normalize

df = pd.DataFrame({'A':[1,2,1,2,3,4,2,1,4], 
                   'B':[3,2,5,1,2,4,5,2,3], 
                   'C':[4,2,4,1,3,3,4,2,1]})

# set the Colour
x              = df[['C']].values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled       = min_max_scaler.fit_transform(x)
df_S           = pd.DataFrame(x_scaled)
c1             = df['C']
c2             = df_S[0]
cmap           = cm.jet # Use the same Cmap

# Set the Colour Scale
vmin = 0
vmax = 5
norm = Normalize(vmin, vmax)

# Graph
plt.figure()
ax = plt.gca()
for a, b, c in zip(df['A'], df['B'], df['C']):
    circle = plt.Circle((a, 
                         b), 
                         1, # Size
                         color=cmap(norm(c)), 
                         lw=5, 
                         fill=False)
    ax.add_artist(circle)
plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel('A')
plt.ylabel('B')
ax.set_aspect(1.0)
sc = plt.scatter(df['A'], 
                 df['B'], 
                 s=0, 
                 c=c1, 
                 cmap='jet', # Use the same Cmap
                 vmin = vmin,
                 vmax = vmax,
                 facecolors='none')
plt.grid()
cbar = plt.colorbar(sc)
cbar.set_label('C', rotation=270, labelpad=20)

plt.show()