我正在使用statsmodels.discrete.discrete_model.NegativeBinomial
进行负二项式回归操作,因此我使用以下脚本创建了一个模型:
from statsmodels.discrete.discrete_model import NegativeBinomial
#create a model
regr = NegativeBinomial(y_train, X_train)
我的y_train
和X_train
的类型分别为<class 'numpy.ndarray'>
和(276,)
和(276, 252)
。
我的问题是,当我致电regr.fit()
时,会引发numpy.linalg.linalg.LinAlgError: Singular matrix
错误。这是我的堆栈跟踪:
Traceback (most recent call last):
File "/home/vajira/PycharmProjects/dengAI/neg_binomial_custom.py", line 137, in <module>
regr_iq = regr_run(nptrain_iq, degree_iq, exploring=True)
File "/home/vajira/PycharmProjects/dengAI/neg_binomial_custom.py", line 92, in regr_run
regr.fit()
File "/home/vajira/ipython/lib/python3.6/site-packages/statsmodels/discrete/discrete_model.py", line 2756, in fit
res_poi = mod_poi.fit(**optim_kwds_prelim)
File "/home/vajira/ipython/lib/python3.6/site-packages/statsmodels/discrete/discrete_model.py", line 1034, in fit
disp=disp, callback=callback, **kwargs)
File "/home/vajira/ipython/lib/python3.6/site-packages/statsmodels/discrete/discrete_model.py", line 220, in fit
disp=disp, callback=callback, **kwargs)
File "/home/vajira/ipython/lib/python3.6/site-packages/statsmodels/base/model.py", line 466, in fit
full_output=full_output)
File "/home/vajira/ipython/lib/python3.6/site-packages/statsmodels/base/optimizer.py", line 191, in _fit
hess=hessian)
File "/home/vajira/ipython/lib/python3.6/site-packages/statsmodels/base/optimizer.py", line 278, in _fit_newton
newparams = oldparams - np.dot(np.linalg.inv(H),
File "/home/vajira/ipython/lib/python3.6/site-packages/numpy/linalg/linalg.py", line 528, in inv
ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
File "/home/vajira/ipython/lib/python3.6/site-packages/numpy/linalg/linalg.py", line 89, in _raise_linalgerror_singular
raise LinAlgError("Singular matrix")
numpy.linalg.linalg.LinAlgError: Singular matrix
有人可以帮我解决这个问题吗?
答案 0 :(得分:1)
我认为这是一个过度参数化的问题。看来您有276个具有252个特征的样本,这表明对于小样本而言,模型过于复杂。 Singular matrix
警告表明该模型未找到与此模型的最佳收敛。
我会回过头来找出您对建模感兴趣的功能少得多的功能。