我正在尝试使用给定的解决方案来解决<img id="player" style="width: 14.4vw;" [src]="https://static.hltv.org//images/playerprofile/bodyshot/compressed/"+post.
id+".png" (error)="setDefaultPic(post.id)">
中的问题。该问题在下面提供:
Codility
我提供了一个解决方案,
You are given N counters, initially set to 0, and you have two possible operations on them:
increase(X) − counter X is increased by 1,
max counter − all counters are set to the maximum value of any counter.
A non-empty array A of M integers is given. This array represents consecutive operations:
if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X),
if A[K] = N + 1 then operation K is max counter.
For example, given integer N = 5 and array A such that:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
the values of the counters after each consecutive operation will be:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)
The goal is to calculate the value of every counter after all operations.
Write a function:
class Solution { public int[] solution(int N, int[] A); }
that, given an integer N and a non-empty array A consisting of M integers, returns a sequence of integers representing the values of the counters.
The sequence should be returned as:
a structure Results (in C), or
a vector of integers (in C++), or
a record Results (in Pascal), or
an array of integers (in any other programming language).
For example, given:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
the function should return [3, 2, 2, 4, 2], as explained above.
Assume that:
N and M are integers within the range [1..100,000];
each element of array A is an integer within the range [1..N + 1].
Complexity:
expected worst-case time complexity is O(N+M);
expected worst-case space complexity is O(N) (not counting the storage required for input arguments).
似乎他们使用2个存储器来保存和更新最小值/最大值,并在算法中使用它们。显然,有一种更直接的方法可以解决该问题。将值增加1或将所有值都设置为建议的最大值,我可以做到这一点。缺点将是降低性能并增加时间复杂度。
但是,我想了解这里的情况。我花了很多时间在示例数组上进行调试,但是算法仍然很少让人困惑。
任何人都可以理解并且可以向我简要说明吗?
答案 0 :(得分:1)
这很简单,他们会延迟更新。您始终跟踪具有最高值(currMax)的计数器的值。然后,当您获得一个将所有计数器都增加到该maxValue的命令时,这太昂贵了,您只是保存了上一次不得不将所有计数器增加到maxValue时,那个值是currMin。
那么,何时将计数器值更新为该值?您懒惰地执行它,只是在收到命令更新该计数器(增加它)时才对其进行更新。因此,当您需要增加计数器时,可以将计数器更新为其旧值和currMin之间的最大值。如果这是自N + 1命令以来该计数器的第一次更新,则它应具有的正确值实际上是currMin,并且它将大于(或等于)其旧值。一个您更新它,您添加1。如果现在又发生了一次增量,则currMin实际上并不重要,因为max将采用其旧值,直到发生另一个N + 1命令为止。
第二个原因是要说明在最后一个N + 1命令之后没有获得增加命令的计数器。
请注意,计数器的2次增值操作之间可以有任意数量的N + 1命令。仍然得出结论,它应该具有上一个N + 1命令时的maxValue,这并不重要,我们之前没有使用先前N + 1中的另一个maxValue对其进行更新,在乎最新消息。