OpenSSL错误:未定义对`_OPENSSL_cleanse |的引用

时间:2011-02-24 01:59:40

标签: c++ openssl

我正在尝试编译下面的代码,我在两行57和70中遇到了对_OPENSSL_cleanse的未定义引用的麻烦。

我不确定我是否缺少标题,或者链接器中可能缺少lib。我正在使用带代码块的gcc。

    /* crypto/sha/sha256.c */ 
/* ==================================================================== 
 * Copyright (c) 2004 The OpenSSL Project.  All rights reserved 
 * according to the OpenSSL license [found in ../../LICENSE]. 
 * ==================================================================== 
 */ 
#include <openssl/opensslconf.h> 
#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256) 

#include <stdlib.h> 
#include <string.h> 

#include <openssl/crypto.h> 
#include <openssl/sha.h> 
#include <openssl/fips.h> 
#include <openssl/opensslv.h> 

const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT; 

int SHA224_Init (SHA256_CTX *c) 
        { 
#ifdef OPENSSL_FIPS 
        FIPS_selftest_check(); 
#endif 
        c->h[0]=0xc1059ed8UL;   c->h[1]=0x367cd507UL; 
        c->h[2]=0x3070dd17UL;   c->h[3]=0xf70e5939UL; 
        c->h[4]=0xffc00b31UL;   c->h[5]=0x68581511UL; 
        c->h[6]=0x64f98fa7UL;   c->h[7]=0xbefa4fa4UL; 
        c->Nl=0;    c->Nh=0; 
        c->num=0;   c->md_len=SHA224_DIGEST_LENGTH; 
        return 1; 
        } 

int SHA256_Init (SHA256_CTX *c) 
        { 
#ifdef OPENSSL_FIPS 
        FIPS_selftest_check(); 
#endif 
        c->h[0]=0x6a09e667UL;   c->h[1]=0xbb67ae85UL; 
        c->h[2]=0x3c6ef372UL;   c->h[3]=0xa54ff53aUL; 
        c->h[4]=0x510e527fUL;   c->h[5]=0x9b05688cUL; 
        c->h[6]=0x1f83d9abUL;   c->h[7]=0x5be0cd19UL; 
        c->Nl=0;    c->Nh=0; 
        c->num=0;   c->md_len=SHA256_DIGEST_LENGTH; 
        return 1; 
        } 

unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md) 
        { 
        SHA256_CTX c; 
        static unsigned char m[SHA224_DIGEST_LENGTH]; 

        if (md == NULL) md=m; 
        SHA224_Init(&c); 
        SHA256_Update(&c,d,n); 
        SHA256_Final(md,&c); 
        OPENSSL_cleanse(&c,sizeof(c)); 
        return(md); 
        } 

unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md) 
        { 
        SHA256_CTX c; 
        static unsigned char m[SHA256_DIGEST_LENGTH]; 

        if (md == NULL) md=m; 
        SHA256_Init(&c); 
        SHA256_Update(&c,d,n); 
        SHA256_Final(md,&c); 
        OPENSSL_cleanse(&c,sizeof(c)); 
        return(md); 
        } 

int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) 
{   return SHA256_Update (c,data,len);   } 
int SHA224_Final (unsigned char *md, SHA256_CTX *c) 
{   return SHA256_Final (md,c);   } 

#define DATA_ORDER_IS_BIG_ENDIAN 

#define HASH_LONG    SHA_LONG 
#define HASH_CTX     SHA256_CTX 
#define HASH_CBLOCK  SHA_CBLOCK 
/* 
 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output." 
 * default: case below covers for it. It's not clear however if it's 
 * permitted to truncate to amount of bytes not divisible by 4. I bet not, 
 * but if it is, then default: case shall be extended. For reference. 
 * Idea behind separate cases for pre-defined lenghts is to let the 
 * compiler decide if it's appropriate to unroll small loops. 
 */ 
#define HASH_MAKE_STRING(c,s)   do {    \ 
        unsigned long ll;    \ 
        unsigned int  n;     \ 
        switch ((c)->md_len)     \ 
        {   case SHA224_DIGEST_LENGTH:  \ 
                for (n=0;n<SHA224_DIGEST_LENGTH/4;n++)  \ 
                {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \ 
                break;   \ 
            case SHA256_DIGEST_LENGTH:  \ 
                for (n=0;n<SHA256_DIGEST_LENGTH/4;n++)  \ 
                {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \ 
                break;   \ 
            default:     \ 
                if ((c)->md_len > SHA256_DIGEST_LENGTH) \ 
                    return 0;    \ 
                for (n=0;n<(c)->md_len/4;n++)    \ 
                {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \ 
                break;   \ 
        }    \ 
        } while (0) 

#define HASH_UPDATE  SHA256_Update 
#define HASH_TRANSFORM   SHA256_Transform 
#define HASH_FINAL   SHA256_Final 
#define HASH_BLOCK_DATA_ORDER   sha256_block_data_order 
#ifndef SHA256_ASM 
static 
#endif 
void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num); 

#include "md32_common.h" 

#ifndef SHA256_ASM 
static const SHA_LONG K256[64] = { 
        0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL, 
        0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL, 
        0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL, 
        0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL, 
        0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL, 
        0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL, 
        0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL, 
        0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL, 
        0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL, 
        0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL, 
        0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL, 
        0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL, 
        0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL, 
        0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL, 
        0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL, 
        0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL }; 

/* 
 * FIPS specification refers to right rotations, while our ROTATE macro 
 * is left one. This is why you might notice that rotation coefficients 
 * differ from those observed in FIPS document by 32-N... 
 */ 
#define Sigma0(x)   (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) 
#define Sigma1(x)   (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) 
#define sigma0(x)   (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) 
#define sigma1(x)   (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) 

#define Ch(x,y,z)   (((x) & (y)) ^ ((~(x)) & (z))) 
#define Maj(x,y,z)  (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 

#ifdef OPENSSL_SMALL_FOOTPRINT 

static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) 
        { 
        unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2; 
        SHA_LONG    X[16],l; 
        int i; 
        const unsigned char *data=in; 

                        while (num--) { 

        a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3]; 
        e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7]; 

        for (i=0;i<16;i++) 
                { 
                HOST_c2l(data,l); T1 = X[i] = l; 
                T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; 
                T2 = Sigma0(a) + Maj(a,b,c); 
                h = g;  g = f;  f = e;  e = d + T1; 
                d = c;  c = b;  b = a;  a = T1 + T2; 
                } 

        for (;i<64;i++) 
                { 
                s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); 
                s1 = X[(i+14)&0x0f];    s1 = sigma1(s1); 

                T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf]; 
                T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; 
                T2 = Sigma0(a) + Maj(a,b,c); 
                h = g;  g = f;  f = e;  e = d + T1; 
                d = c;  c = b;  b = a;  a = T1 + T2; 
                } 

        ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 
        ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 

                        } 
} 

#else 

#define ROUND_00_15(i,a,b,c,d,e,f,g,h)   do {   \ 
        T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];  \ 
        h = Sigma0(a) + Maj(a,b,c);  \ 
        d += T1;    h += T1;     } while (0) 

#define ROUND_16_63(i,a,b,c,d,e,f,g,h,X)    do {    \ 
        s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);    \ 
        s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);    \ 
        T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \ 
        ROUND_00_15(i,a,b,c,d,e,f,g,h);  } while (0) 

static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) 
        { 
        unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1; 
        SHA_LONG    X[16]; 
        int i; 
        const unsigned char *data=in; 
        const union { long one; char little; } is_endian = {1}; 

                        while (num--) { 

        a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3]; 
        e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7]; 

        if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0) 
                { 
                const SHA_LONG *W=(const SHA_LONG *)data; 

                T1 = X[0] = W[0];   ROUND_00_15(0,a,b,c,d,e,f,g,h); 
                T1 = X[1] = W[1];   ROUND_00_15(1,h,a,b,c,d,e,f,g); 
                T1 = X[2] = W[2];   ROUND_00_15(2,g,h,a,b,c,d,e,f); 
                T1 = X[3] = W[3];   ROUND_00_15(3,f,g,h,a,b,c,d,e); 
                T1 = X[4] = W[4];   ROUND_00_15(4,e,f,g,h,a,b,c,d); 
                T1 = X[5] = W[5];   ROUND_00_15(5,d,e,f,g,h,a,b,c); 
                T1 = X[6] = W[6];   ROUND_00_15(6,c,d,e,f,g,h,a,b); 
                T1 = X[7] = W[7];   ROUND_00_15(7,b,c,d,e,f,g,h,a); 
                T1 = X[8] = W[8];   ROUND_00_15(8,a,b,c,d,e,f,g,h); 
                T1 = X[9] = W[9];   ROUND_00_15(9,h,a,b,c,d,e,f,g); 
                T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f); 
                T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e); 
                T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d); 
                T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c); 
                T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b); 
                T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a); 

                data += SHA256_CBLOCK; 
                } 
        else 
                { 
                SHA_LONG l; 

                HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h); 
                HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g); 
                HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f); 
                HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e); 
                HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d); 
                HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c); 
                HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b); 
                HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a); 
                HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h); 
                HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g); 
                HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f); 
                HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e); 
                HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d); 
                HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c); 
                HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b); 
                HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a); 
                } 

        for (i=16;i<64;i+=8) 
                { 
                ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X); 
                ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X); 
                ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X); 
                ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X); 
                ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X); 
                ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X); 
                ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X); 
                ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X); 
                } 

        ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 
        ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 

                        } 
        } 
int main() 
{ 
    return 0; 
} 
#endif 
#endif /* SHA256_ASM */ 

#endif /* OPENSSL_NO_SHA256 */ 

1 个答案:

答案 0 :(得分:3)

我将mem_clr.c包含在我的项目中并进行了编译。