使用mlr的嵌套重采样+ LASSO(regv.cvglment)

时间:2018-06-22 21:00:06

标签: r resampling lasso mlr

我正在尝试使用regr.cvglment对内部循环的10个CV和对外部循环的10个CV进行嵌套重采样。 Mlr使用包装函数(https://mlr-org.github.io/mlr/articles/tutorial/devel/nested_resampling.html

提供代码

现在,我只是从提供的代码中交换了两件事 1)使用“ regr.cvglmnet”代替支持向量机(ksvm) 2)内循环和外循环的迭代次数

在lrn函数之后,出现以下指定的错误。有人可以向我解释吗?我是编码和机器学习的新手,所以我可能在代码中做过一些非常愚蠢的事情。...

ps = makeParamSet(
  makeDiscreteParam("C", values = 2^(-12:12)),
  makeDiscreteParam("sigma", values = 2^(-12:12))
)
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Subsample", iters = 10)
lrn = makeTuneWrapper("regr.cvglmnet", resampling = inner, par.set = ps, 
                      control = ctrl, show.info = FALSE)

# Error in checkTunerParset(learner, par.set, measures, control) : 
# Can only tune parameters for which learner parameters exist: C,sigma

### Outer resampling loop
outer = makeResampleDesc("CV", iters = 10) 
r = resample(lrn, iris.task, resampling = outer, extract = getTuneResult, 
             show.info = FALSE)

2 个答案:

答案 0 :(得分:2)

将LASSO与glmnet一起使用时,只需要调整s。这是模型预测新数据时使用的重要参数。 参数lambda绝对没有影响,这是因为在预测中对程序包进行编码的方式。如果您将s设置为与选择的任何lambda值不同,则将使用s作为惩罚项来重新拟合模型。

默认情况下,在lambda调用过程中会拟合多个具有不同train值的模型。但是,为了进行预测,将使用最佳lambda值来拟合新模型。因此,实际上,调整是在预测步骤中完成的。

可以通过

选择s的良好默认范围
  1. 使用glmnet中的默认值训练模型
  2. 检查lambda的最小值和最大值
  3. 将它们用作s的上下限,然后使用mlr进行调整

另请参阅this讨论。

library(mlr)
#> Loading required package: ParamHelpers

lrn_glmnet <- makeLearner("regr.glmnet",
                          alpha = 1,
                          intercept = FALSE)

# check lambda
glmnet_train = mlr::train(lrn_glmnet, bh.task)
summary(glmnet_train$learner.model$lambda)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>   143.5   157.4   172.8   174.3   189.6   208.1

# set limits
ps_glmnet <- makeParamSet(makeNumericParam("s", lower = 140, upper = 208))

# tune params in parallel using a grid search for simplicity
tune.ctrl = makeTuneControlGrid()
inner <- makeResampleDesc("CV", iters = 2)

configureMlr(on.learner.error = "warn", on.error.dump = TRUE)
library(parallelMap)
parallelStart(mode = "multicore", level = "mlr.tuneParams", cpus = 4,
              mc.set.seed = TRUE) # only parallelize the tuning
#> Starting parallelization in mode=multicore with cpus=4.
set.seed(12345)
params_tuned_glmnet = tuneParams(lrn_glmnet, task = bh.task, resampling = inner,
                                 par.set = ps_glmnet, control = tune.ctrl, 
                                 measure = list(rmse))
#> [Tune] Started tuning learner regr.glmnet for parameter set:
#>      Type len Def     Constr Req Tunable Trafo
#> s numeric   -   - 140 to 208   -    TRUE     -
#> With control class: TuneControlGrid
#> Imputation value: Inf
#> Mapping in parallel: mode = multicore; cpus = 4; elements = 10.
#> [Tune] Result: s=140 : rmse.test.rmse=17.9803086
parallelStop()
#> Stopped parallelization. All cleaned up.

# train the model on the whole dataset using the `s` value from the tuning

lrn_glmnet_tuned <- makeLearner("regr.glmnet",
                                alpha = 1,
                                s = 140,
                                intercept = FALSE)
#lambda = sort(seq(0, 5, length.out = 100), decreasing = T))
glmnet_train_tuned = mlr::train(lrn_glmnet_tuned, bh.task)

reprex package(v0.2.0)于2018-07-03创建。

devtools::session_info()
#> Session info -------------------------------------------------------------
#>  setting  value                       
#>  version  R version 3.5.0 (2018-04-23)
#>  system   x86_64, linux-gnu           
#>  ui       X11                         
#>  language (EN)                        
#>  collate  en_US.UTF-8                 
#>  tz       Europe/Berlin               
#>  date     2018-07-03
#> Packages -----------------------------------------------------------------
#>  package      * version   date       source         
#>  backports      1.1.2     2017-12-13 CRAN (R 3.5.0) 
#>  base         * 3.5.0     2018-06-04 local          
#>  BBmisc         1.11      2017-03-10 CRAN (R 3.5.0) 
#>  bit            1.1-14    2018-05-29 cran (@1.1-14) 
#>  bit64          0.9-7     2017-05-08 CRAN (R 3.5.0) 
#>  blob           1.1.1     2018-03-25 CRAN (R 3.5.0) 
#>  checkmate      1.8.5     2017-10-24 CRAN (R 3.5.0) 
#>  codetools      0.2-15    2016-10-05 CRAN (R 3.5.0) 
#>  colorspace     1.3-2     2016-12-14 CRAN (R 3.5.0) 
#>  compiler       3.5.0     2018-06-04 local          
#>  data.table     1.11.4    2018-05-27 CRAN (R 3.5.0) 
#>  datasets     * 3.5.0     2018-06-04 local          
#>  DBI            1.0.0     2018-05-02 cran (@1.0.0)  
#>  devtools       1.13.6    2018-06-27 CRAN (R 3.5.0) 
#>  digest         0.6.15    2018-01-28 CRAN (R 3.5.0) 
#>  evaluate       0.10.1    2017-06-24 CRAN (R 3.5.0) 
#>  fastmatch      1.1-0     2017-01-28 CRAN (R 3.5.0) 
#>  foreach        1.4.4     2017-12-12 CRAN (R 3.5.0) 
#>  ggplot2        2.2.1     2016-12-30 CRAN (R 3.5.0) 
#>  git2r          0.21.0    2018-01-04 CRAN (R 3.5.0) 
#>  glmnet         2.0-16    2018-04-02 CRAN (R 3.5.0) 
#>  graphics     * 3.5.0     2018-06-04 local          
#>  grDevices    * 3.5.0     2018-06-04 local          
#>  grid           3.5.0     2018-06-04 local          
#>  gtable         0.2.0     2016-02-26 CRAN (R 3.5.0) 
#>  htmltools      0.3.6     2017-04-28 CRAN (R 3.5.0) 
#>  iterators      1.0.9     2017-12-12 CRAN (R 3.5.0) 
#>  knitr          1.20      2018-02-20 CRAN (R 3.5.0) 
#>  lattice        0.20-35   2017-03-25 CRAN (R 3.5.0) 
#>  lazyeval       0.2.1     2017-10-29 CRAN (R 3.5.0) 
#>  magrittr       1.5       2014-11-22 CRAN (R 3.5.0) 
#>  Matrix         1.2-14    2018-04-09 CRAN (R 3.5.0) 
#>  memoise        1.1.0     2017-04-21 CRAN (R 3.5.0) 
#>  memuse         4.0-0     2017-11-10 CRAN (R 3.5.0) 
#>  methods      * 3.5.0     2018-06-04 local          
#>  mlr          * 2.13      2018-07-01 local          
#>  munsell        0.5.0     2018-06-12 CRAN (R 3.5.0) 
#>  parallel       3.5.0     2018-06-04 local          
#>  parallelMap  * 1.3       2015-06-10 CRAN (R 3.5.0) 
#>  ParamHelpers * 1.11      2018-06-25 CRAN (R 3.5.0) 
#>  pillar         1.2.3     2018-05-25 CRAN (R 3.5.0) 
#>  plyr           1.8.4     2016-06-08 CRAN (R 3.5.0) 
#>  Rcpp           0.12.17   2018-05-18 cran (@0.12.17)
#>  rlang          0.2.1     2018-05-30 CRAN (R 3.5.0) 
#>  rmarkdown      1.10      2018-06-11 CRAN (R 3.5.0) 
#>  rprojroot      1.3-2     2018-01-03 CRAN (R 3.5.0) 
#>  RSQLite        2.1.1     2018-05-06 cran (@2.1.1)  
#>  scales         0.5.0     2017-08-24 CRAN (R 3.5.0) 
#>  splines        3.5.0     2018-06-04 local          
#>  stats        * 3.5.0     2018-06-04 local          
#>  stringi        1.2.3     2018-06-12 CRAN (R 3.5.0) 
#>  stringr        1.3.1     2018-05-10 CRAN (R 3.5.0) 
#>  survival       2.42-3    2018-04-16 CRAN (R 3.5.0) 
#>  tibble         1.4.2     2018-01-22 CRAN (R 3.5.0) 
#>  tools          3.5.0     2018-06-04 local          
#>  utils        * 3.5.0     2018-06-04 local          
#>  withr          2.1.2     2018-03-15 CRAN (R 3.5.0) 
#>  XML            3.98-1.11 2018-04-16 CRAN (R 3.5.0) 
#>  yaml           2.1.19    2018-05-01 CRAN (R 3.5.0)

答案 1 :(得分:1)

该错误消息告诉您,您无法调整mlr对于该学习者不了解的参数-regr.cvglmnet没有Csigma参数。您可以使用getLearnerParamSet()函数获得mlr知道的学习者参数:

> getLearnerParamSet(makeLearner("regr.cvglmnet"))
                          Type  len        Def                Constr Req
family                discrete    -   gaussian      gaussian,poisson   -
alpha                  numeric    -          1                0 to 1   -
nfolds                 integer    -         10              3 to Inf   -
type.measure          discrete    -        mse               mse,mae   -
s                     discrete    - lambda.1se lambda.1se,lambda.min   -
nlambda                integer    -        100              1 to Inf   -
lambda.min.ratio       numeric    -          -                0 to 1   -
standardize            logical    -       TRUE                     -   -
intercept              logical    -       TRUE                     -   -
thresh                 numeric    -      1e-07              0 to Inf   -
dfmax                  integer    -          -              0 to Inf   -
pmax                   integer    -          -              0 to Inf   -
exclude          integervector           -              1 to Inf   -
penalty.factor   numericvector           -                0 to 1   -
lower.limits     numericvector           -             -Inf to 0   -
upper.limits     numericvector           -              0 to Inf   -
maxit                  integer    -     100000              1 to Inf   -
type.gaussian         discrete    -          -      covariance,naive   -
fdev                   numeric    -      1e-05                0 to 1   -
devmax                 numeric    -      0.999                0 to 1   -
eps                    numeric    -      1e-06                0 to 1   -
big                    numeric    -    9.9e+35           -Inf to Inf   -
mnlam                  integer    -          5              1 to Inf   -
pmin                   numeric    -      1e-09                0 to 1   -
exmx                   numeric    -        250           -Inf to Inf   -
prec                   numeric    -      1e-10           -Inf to Inf   -
mxit                   integer    -        100              1 to Inf   -
                 Tunable Trafo
family              TRUE     -
alpha               TRUE     -
nfolds              TRUE     -
type.measure        TRUE     -
s                   TRUE     -
nlambda             TRUE     -
lambda.min.ratio    TRUE     -
standardize         TRUE     -
intercept           TRUE     -
thresh              TRUE     -
dfmax               TRUE     -
pmax                TRUE     -
exclude             TRUE     -
penalty.factor      TRUE     -
lower.limits        TRUE     -
upper.limits        TRUE     -
maxit               TRUE     -
type.gaussian       TRUE     -
fdev                TRUE     -
devmax              TRUE     -
eps                 TRUE     -
big                 TRUE     -
mnlam               TRUE     -
pmin                TRUE     -
exmx                TRUE     -
prec                TRUE     -
mxit                TRUE     -

您可以使用这些参数中的任何一个来定义用于调整此特定学习者的有效参数集,例如:

ps = makeParamSet(
  makeDiscreteParam("family", values = c("gaussian", "poisson")),
  makeDiscreteParam("alpha", values = 0.1*0:10)
)