我有一个包含两列的数据集:客户id
和addresses
:
id addresses
1111 asturias 32, benito juarez, CDMX
1111 JOSE MARIA VELASCO, CDMX
1111 asturias 32 DEPT 401, INSURGENTES, CDMX
1111 deportes
1111 asturias 32, benito juarez, MIXCOAC, CDMX
1111 cd. de los deportes
1111 deportes, wisconsin
2222 TORRE REFORMA LATINO, CDMX
2222 PERISUR 2890
2222 WE WORK, CDMX
2222 WEWORK, TORRE REFORMA LATINO, CDMX
2222 PERISUR: 2690, COYOCAN
2222 TORRE REFORMA LATINO
我有兴趣为每个客户找到不同的地址数量。例如,对于客户id
1111,有3个不同的地址:
[asturias 32, benito juarez, CDMX,
asturias 32 DEPT 401, INSURGENTES, CDMX,
asturias 32, benito juarez, MIXCOAC, CDMX]
[JOSE MARIA VELASCO, CDMX]
[deportes,
cd. de los deportes,
deportes, wisconsin]
我用python写的代码只能显示连续两行之间的相似性:行i
和行i+1
(分数0表示完全不同,而1表示完全相似)。
id addresses score
1111 asturias 32, benito juarez, CDMX 0
1111 JOSE MARIA VELASCO, CDMX 0
1111 asturias 32 DEPT 401, INSURGENTES, CDMX 0
1111 deportes 0
1111 asturias 32, benito juarez, MIXCOAC, CDMX 0
1111 cd. de los deportes 0.21
1111 deportes, wisconsin 0
2222 TORRE REFORMA LATINO, CDMX 0
2222 PERISUR 2890 0
2222 WE WORK, CDMX 0.69
2222 WEWORK, TORRE REFORMA LATINO, CDMX 0
2222 PERISUR: 2690, COYOCAN 0
2222 TORRE REFORMA LATINO
如果得分> 0.20,我正在考虑他们两个不同的地址。以下是我的代码:
import nltk
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import re
import unicodedata
import unidecode
import string
from sklearn.feature_extraction.text import TfidfVectorizer
data=pd.read_csv('address.csv')
nltk.download('punkt')
stemmer = nltk.stem.porter.PorterStemmer()
remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)
def stem_tokens(tokens):
return [stemmer.stem(item) for item in tokens]
'''remove punctuation, lowercase, stem'''
def normalize(text):
return stem_tokens(
nltk.word_tokenize(text.lower().translate(remove_punctuation_map)))
vectorizer = TfidfVectorizer(tokenizer=normalize, stop_words='english')
def cosine_sim(text1, text2):
tfidf = vectorizer.fit_transform([text1, text2])
return ((tfidf * tfidf.T).A)[0, 1]
cnt = np.array(np.arange(0, 5183))
indx = []
for i in cnt:
print cosine_sim(data['address'][i], data['address'][i + 1])
但是上面的代码无法比较特定客户id
的每个可能的行。我想要如下输出:
id unique address
1111 3
2222 3
3333 2
答案 0 :(得分:1)
您可以为此目的在itertools中使用组合。请参阅下面的比较代码。
请注意,我使用了用分号分隔的CSV文件
此外,如果需要,您可以使用similarity
中的SPACY
函数来查找两个短语之间的相似性。在这里,我使用了您提供的相同功能。
import nltk
import numpy as np
import pandas as pd
import itertools
import string
from sklearn.feature_extraction.text import TfidfVectorizer
def stem_tokens(tokens):
return [stemmer.stem(item) for item in tokens]
'''remove punctuation, lowercase, stem'''
def normalize(text):
return stem_tokens(
nltk.word_tokenize(text.lower().translate(remove_punctuation_map)))
def cosine_sim(text1, text2):
tfidf = vectorizer.fit_transform([text1, text2])
return ((tfidf * tfidf.T).A)[0, 1]
def group_addresses(addresses):
'''merge the lists if they have an element in common'''
out = []
while len(addresses)>0:
# first, *rest = addresses # for python 3
first, rest = addresses[0], addresses[1:] # for python2
first = set(first)
lf = -1
while len(first)>lf:
lf = len(first)
rest2 = []
for r in rest:
if len(first.intersection(set(r)))>0:
first |= set(r)
else:
rest2.append(r)
rest = rest2
out.append(first)
addresses = rest
return out
df=pd.read_csv("address.csv", sep=";")
stemmer = nltk.stem.porter.PorterStemmer()
remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)
vectorizer = TfidfVectorizer(tokenizer=normalize, stop_words='english')
sim_df = pd.DataFrame(columns=['id', 'unique address'])
for customer in set(df['id']):
customer_addresses = (df.loc[df['id'] == customer]['addresses']) #Get the addresses of each customer
all_entries = [[adr] for adr in customer_addresses] #Make list of lists
sim_pairs = [list((text1, text2)) for text1, text2 in itertools.combinations(customer_addresses, 2) if cosine_sim(text1, text2) >0.2 ] # Find all pairs whose similiarty is greater than 0.2
all_entries.extend(sim_pairs)
sim_pairs = group_addresses(all_entries)
print(customer , len(sim_pairs))
输出类似于
2222 2
1111 3
形成的组是
2222
['WE WORK, CDMX', 'WEWORK, TORRE REFORMA LATINO, CDMX', 'TORRE REFORMA LATINO, CDMX', 'TORRE REFORMA LATINO']
['PERISUR 2890', 'PERISUR: 2690, COYOCAN']
1111
['asturias 32 DEPT 401, INSURGENTES, CDMX', 'asturias 32, benito juarez, MIXCOAC, CDMX', 'asturias 32, benito juarez, CDMX']
['JOSE MARIA VELASCO, CDMX']
['deportes, wisconsin', 'cd. de los deportes', 'deportes']