我一直在使用用户定义的功能来打开ZIP文件中包含的CSV文件,这对我来说一直很好。
How to scrape .csv files from a url, when they are saved in a .zip file in Python?
现在,我正在尝试打开包含在另一个ZIP中的ZIP中的CSV文件,并且遇到了一些麻烦。
我没有得到这个错误:
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xfd in position 0: invalid start byte
哪种方式有意义,因为我正在尝试使用read_csv()
import pandas as pd
def fetch_multi_csv_zip_from_url(url, filenames=(), *args, **kwargs):
assert kwargs.get('compression') is None
req = urlopen(url)
zip_file = zipfile.ZipFile(BytesIO(req.read()))
if filenames:
names = zip_file.namelist()
for filename in filenames:
if filename not in names:
raise ValueError(
'filename {} not in {}'.format(filename, names))
else:
filenames = zip_file.namelist()
return {name: pd.read_csv(zip_file.open(name), *args, **kwargs)
for name in filenames}
try:
from urllib.request import urlopen
except ImportError:
from urllib2 import urlopen
from io import BytesIO
import zipfile
final_links_list =['http://www.nemweb.com.au/REPORTS/ARCHIVE/Dispatch_SCADA/PUBLIC_DISPATCHSCADA_20170523.zip', 'http://www.nemweb.com.au/REPORTS/ARCHIVE/Dispatch_SCADA/PUBLIC_DISPATCHSCADA_20170524.zip']
l = len(final_links_list)
for j in range(0,l):
print(j)
dfs = fetch_multi_csv_zip_from_url(final_links_list[j])
这是我一直在使用的代码,我认为我必须更改从以下开始的行:
return {name: pd.read_csv(zip_file.open(name)
,因为它不再返回csv文件,而是一个zip文件。
答案 0 :(得分:2)
这可以通过一点递归来完成。如果发现ZIP内的文件是ZIP文件,则进行递归调用以提取CSV文件:
try:
from urllib.request import urlopen
except ImportError:
from urllib2 import urlopen
from io import BytesIO
import zipfile
import pandas as pd
# Dictionary holding all the dataframes from all zip/zip/csvs
dfs = {}
def zip_to_dfs(data):
zip_file = zipfile.ZipFile(BytesIO(data))
for name in zip_file.namelist():
if name.lower().endswith('.csv'):
dfs[name] = pd.read_csv(zip_file.open(name))
elif name.lower().endswith('.zip'):
zip_to_dfs(zip_file.open(name).read())
def get_zip_data_from_url(url):
req = urlopen(url)
zip_to_dfs(req.read())
final_links_list = [
'http://www.nemweb.com.au/REPORTS/ARCHIVE/Dispatch_SCADA/PUBLIC_DISPATCHSCADA_20170523.zip',
'http://www.nemweb.com.au/REPORTS/ARCHIVE/Dispatch_SCADA/PUBLIC_DISPATCHSCADA_20170524.zip']
for link in final_links_list:
print(link)
get_zip_data_from_url(link)
# Display the first couple of dataframes
for name, df in sorted(dfs.items())[:2]:
print('\n', name, '\n')
print(df)
这将显示以下内容:
http://www.nemweb.com.au/REPORTS/ARCHIVE/Dispatch_SCADA/PUBLIC_DISPATCHSCADA_20170524.zip
PUBLIC_DISPATCHSCADA_201705240010_0000000283857084.CSV
C NEMP.WORLD DISPATCHSCADA AEMO PUBLIC 2017/05/24 \
0 I DISPATCH UNIT_SCADA 1.0 SETTLEMENTDATE DUID
1 D DISPATCH UNIT_SCADA 1.0 2017/05/24 00:10:00 BARCSF1
2 D DISPATCH UNIT_SCADA 1.0 2017/05/24 00:10:00 BUTLERSG
.. .. ... ... ... ... ...
263 D DISPATCH UNIT_SCADA 1.0 2017/05/24 00:10:00 YWPS3
264 D DISPATCH UNIT_SCADA 1.0 2017/05/24 00:10:00 YWPS4
265 C END OF REPORT 267 NaN NaN NaN
00:05:08 0000000283857084 DISPATCHSCADA.1 0000000283857078
0 SCADAVALUE NaN NaN NaN
1 0 NaN NaN NaN
2 8.299998 NaN NaN NaN
.. ... ... ... ...
263 388.745570 NaN NaN NaN
264 391.568360 NaN NaN NaN
265 NaN NaN NaN NaN
[266 rows x 10 columns]
PUBLIC_DISPATCHSCADA_201705240015_0000000283857169.CSV
C NEMP.WORLD DISPATCHSCADA AEMO PUBLIC 2017/05/24 \
0 I DISPATCH UNIT_SCADA 1.0 SETTLEMENTDATE DUID
1 D DISPATCH UNIT_SCADA 1.0 2017/05/24 00:15:00 BARCSF1
2 D DISPATCH UNIT_SCADA 1.0 2017/05/24 00:15:00 BUTLERSG
.. .. ... ... ... ... ...
263 D DISPATCH UNIT_SCADA 1.0 2017/05/24 00:15:00 YWPS3
264 D DISPATCH UNIT_SCADA 1.0 2017/05/24 00:15:00 YWPS4
265 C END OF REPORT 267 NaN NaN NaN
00:10:08 0000000283857169 DISPATCHSCADA.1 0000000283857163
0 SCADAVALUE NaN NaN NaN
1 0 NaN NaN NaN
2 8.299998 NaN NaN NaN
.. ... ... ... ...
263 386.205080 NaN NaN NaN
264 389.592410 NaN NaN NaN
265 NaN NaN NaN NaN
[266 rows x 10 columns]