我正在尝试根据信息行创建有序元组列表:
team stat1 explain1 stat2 explain2 stat3 explain3
green +10 inc due to.. -8 dec due to.. +2 inc due to..
blue -6 dec due to.. +5 inc due to.. +8 inc due to..
red +5 inc due to.. +10 inc due to.. -2 dec due to..
我想为每个团队创建一个有序的元组列表(按绝对值),所以“团队”“蓝色”看起来像这样:
tuple list based on above order: Abs value ordered tuple list:
-6: dec due to.. 8: incr due to..
5: inc due to.. -6: decr due to..
8: inc due to.. 5: incr due to..
答案 0 :(得分:1)
转置您的数据框以构成每个团队三行,每一行包括团队名称,统计信息更改值以及该单个统计信息的说明。添加带有绝对值的新列,以便您可以轻松地对其进行排序:
IdentityServerOptions options = new IdentityServerOptions
{
AuthenticationOptions = new AuthenticationOptions {
LoginPageLinks = new List<LoginPageLink> {
new LoginPageLink { Href = "https://example.com/register", Text = "Register" },
new LoginPageLink { Href = "https://example.com/forgot-password", Text = "Forgot your password?"}
}
}
};
现在生成排序的输出很简单:
transposed_df = pd.DataFrame({
'team': np.repeat(df.transpose().iloc[0].values, 3),
'stat': pd.concat((
df.transpose().iloc[1::2, i]
for i in range(3)), ignore_index=True),
'explain': pd.concat((
df.transpose().iloc[2::2, i]
for i in range(3)), ignore_index=True),
'abs_stat': pd.concat((
df.transpose().iloc[1::2, i]
for i in range(3)), ignore_index=True).abs(),
}, columns=['team', 'stat', 'explain', 'abs_stat'])
这将产生:
transposed_df.sort_values(by=['team', 'abs_stat'], ascending=False).drop('abs_stat', axis=1)