我正在尝试对Spark结构化流数据帧执行非常简单的排序操作,但最终会导致“线程“主”中的异常” org.apache.spark.sql.AnalysisException:流数据帧/数据集不支持排序,除非已启用在“完整输出模式下聚合了DataFrame / Dataset”,但以下情况除外。您能帮我吗?
代码:
val df: DataFrame = spark.readStream.format("kafka")
.option("kafka.bootstrap.servers", kafkaBrokerList)
.option("kafka.security.protocol", security)
.option("startingOffsets", "latest")
.option("subscribe", srcTopic)
.option("group.id", groupID)
.option("failOnDataLoss", false)
.load
val uDF = df
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
.select($"value")
.select(from_json($"value", uSchema).as("events"))
.select($"events.*")
val uDF2 = uDF
.select($"COL1", $"COL2", $"COL3", $"COL4", $"COL5", $"COL6", $"COL7", $"COL8")
.sort($"COL5",$"COL3",$"COL8")
val kDF = uDF2
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("kafka.security.protocol", "PLAINTEXT")
.option("topic", "r_topic")
.option("checkpointLocation", "/tmp/kafka-sink-checkpoint")
.start()
kDF.awaitTermination()
例外:
Exception in thread "main" org.apache.spark.sql.AnalysisException: Sorting is not supported on streaming DataFrames/Datasets, unless it is on aggregated DataFrame/Dataset in Complete output mode;;
数据:
想按“ COL5”,“ COL3”,“ COL8”对DF进行排序
+------------+--------------------------------------+-------------+-----+-----------+-------------+----------+----------+
|COL1 |COL2 |COL3 |COL4 |COL5 |COl6 |COL7 |COl8 |
+------------+--------------------------------------+-------------+-----+-----------+-------------+----------+----------+
|RunKafkaTest|DUMMY VALUE |1528326884394|52.0 |Analog |0 |1528326880|67 |
|RunKafkaTest|DUMMY VALUE |1528326884388|53.0 |Analog |0 |1528326880|68 |
|RunKafkaTest|DUMMY VALUE |1528326886400|54.0 |Analog |0 |1528326880|69 |
|RunKafkaTest|DUMMY VALUE |1528326887412|55.0 |Analog |0 |1528326880|70 |
|RunKafkaTest|DUMMY VALUE |1528326887406|56.0 |Analog |0 |1528326880|71 |
|RunKafkaTest|DUMMY VALUE |1528326889418|57.0 |Analog |0 |1528326880|72 |
|RunKafkaTest|DUMMY VALUE |1528326890423|58.0 |Analog |0 |1528326880|73 |
|RunKafkaTest|DUMMY VALUE |1528326891429|59.0 |Analog |0 |1528326880|74 |
|RunKafkaTest|DUMMY VALUE |1528326892435|1.0 |Analog |0 |1528326880|76 |
|RunKafkaTest|DUMMY VALUE |1528326893449|2.0 |Analog |0 |1528326880|77 |
|RunKafkaTest|DUMMY VALUE |1528326894447|3.0 |Analog |0 |1528326880|78 |
|RunKafkaTest|DUMMY VALUE |1528326895459|4.0 |Analog |0 |1528326880|79 |
|RunKafkaTest|DUMMY VALUE |1528326896458|5.0 |Analog |0 |1528326880|80 |
|RunKafkaTest|DUMMY VALUE |1528326897464|6.0 |Analog |0 |1528326880|81 |
|RunKafkaTest|DUMMY VALUE |1528326898370|7.0 |Analog |0 |1528326880|82 |
|RunKafkaTest|DUMMY VALUE |1528326899476|8.0 |Analog |0 |1528326880|83 |
|RunKafkaTest|DUMMY VALUE |1528326900482|9.0 |Analog |0 |1528326880|84 |
|RunKafkaTest|DUMMY VALUE |1528326901488|10.0 |Analog |0 |1528326880|85 |
|RunKafkaTest|DUMMY VALUE |1528326902493|11.0 |Analog |0 |1528326880|86 |
+------------+--------------------------------------+-------------+-----+-----------+-------------+----------+----------+
答案 0 :(得分:1)
您可能需要重新考虑这将是流中排序的输出。在实际流式传输中,从理论上讲,您不太可能遇到流中的最后一个事件,因此您永远不会获得输出。尽管Spark实际上进行了微批量处理,但它试图使语义与真实流相似。您可能最终会重新定义您的问题,并利用窗口化或flatMapGroupsWithState之类的有状态操作。您也许还可以手动拆分范围并运行批处理。
答案 1 :(得分:0)
您需要先按操作分组,然后再进行排序(排序),例如:
uDF.select($"COL1", $"COL2", $"COL3", $"COL4", $"COL5", $"COL6", $"COL7", $"COL8")
.groupBy("COL1")
.agg(max("COL2").as("COL2")......).sort("........")