使用dplyr的for循环汇总返回的结果与group_by不同

时间:2018-06-22 00:01:54

标签: r for-loop ggplot2 dplyr

for摘要功能上应用dplyr循环时,我得到奇怪的结果-不知道为什么或如何解决它。

test <- data.frame(title = c("a", "b", "c","a","b","c", "a", "b", "c","a","b","c"),
                       category = c("A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B"),
                       sex = c("m", "m", "m", "f", "f", "f", "m", "m", "m", "f", "f", "f"),
                       salary = c(50,70,90,40,60,85, 220,270,350,180,200,330))

category_list <- unique(test$category)

tmp = list()

for (category in category_list) {
  # Create an average salary line for the category
  tmp[category] <- test %>% 
    filter(category == category) %>%
    summarise(mean(salary))
  print(tmp)
}

我得到这个作为输出

$A
[1] 162.0833

$A
[1] 162.0833

$B
[1] 162.0833

其中group_by()函数返回适当的结果:

    test %>% group_by(category) %>% summarise(mean(salary))
# A tibble: 2 x 2
  category `mean(salary)`
  <fct>             <dbl>
1 A                  65.8
2 B                 258.

替换特定类别确实会返回适当的结果,

test %>% 
        filter(category == "A") %>%
        summarise(mean(salary))
      mean(salary)
1     65.83333

所以category_list对象也许有问题吗? 令人惊讶的是,当我调用category_list对象的第一个元素时,我也得到了适当的答案:

test %>% 
+     filter(category == category_list[1]) %>%
+     summarise(mean(salary))
  mean(salary)
1     65.83333

我想弄清楚(而不使用group_by的原因是因为我试图制作一个脚本,该脚本将创建多个ggplot对象,然后将这些对象与{{1 }}库。

也许我错了,可以使用gridExtra,但是我想到的唯一方法是使用以下伪代码:

  • 1)通过group_by创建一个在category参数中使用的均值列表
  • 2)通过geom_hline()子集一个数据帧对象,每个子集将以其category在ggplot中使用
  • 3)为每个geom_hline()创建一个打印对象列表
  • 4)在category循环之外使用grid.arrange()库中的gridExtra将每个图组合在一起

到目前为止,这是我的代码(无法正常工作):

for

我想要的输出是这样:

toy example

1 个答案:

答案 0 :(得分:1)

for循环中的问题是语句filter(category == category)。总是如此,因为这两次都从您的数据中提取category。如果您确实需要for循环,只需在for循环中重命名迭代器即可。

但是,您根本不需要grid.arrangefacet_wrap可以为您提供所需的确切信息(您可能需要对构面标签进行一些重新格式化,可以使用以strip开头的主题元素进行控制):

category_means <- test %>% 
  group_by(category) %>%
  summarize_at(vars(salary), mean)

p <- test %>%
  # group_by(category) %>%
  ggplot(aes(x = title, y = salary, color = sex)) + 
  facet_wrap(~ category, nrow = 1, scales = "free_y") +  
  geom_line(color = 'white') + 
  geom_point() + 
  scale_color_manual(values = c("#F49171", "#81C19C")) +
  geom_hline(data = category_means, aes(yintercept = salary), color = 'white', alpha = 0.6, size = 1) + 
  theme(legend.position = "none",
    panel.background = element_rect(color = "#242B47", fill = "#242B47"),
    plot.background = element_rect(color = "#242B47", fill = "#242B47"),
    axis.line = element_line(color = "grey48", size = 0.05, linetype = "dotted"),
    axis.text = element_text(family = "Georgia", color = "white"),
    axis.text.x = element_text(angle = 90),
    # Get rid of the y- and x-axis titles
    axis.title.y=element_blank(),
    axis.title.x=element_blank(),
    panel.grid.major.y = element_line(color = "grey48", size = 0.05),
    panel.grid.minor.y = element_blank(),
    panel.grid.major.x = element_blank())
p