以下示例不起作用,除非asynchronous
中未使用Localcluster
关键字。我想控制使用多少个流程/工人和并行处理功能,并在准备就绪时打印结果。需要更改什么?
import time
from dask.distributed import Client, LocalCluster, as_completed
def wait(sec):
time.sleep(sec)
return sec
def main():
cluster = LocalCluster(n_workers=2, ncores=2, asynchronous=True)
inputs = [5, 7, 3, 1]
client = Client(cluster)
futures = client.map(wait, inputs)
for future, result in as_completed(futures, with_results=True):
print(result)
client.close()
if __name__ == '__main__':
main()
答案 0 :(得分:1)
根据您的建议,应该从LocalCluster调用中删除asynchronous=
关键字。此关键字用于支持异步功能,如下所示:
async def main():
cluster = await LocalCluster(n_workers=2, ncores=2, asynchronous=True)
inputs = [5, 7, 3, 1]
client = await Client(cluster, asynchronous=True)
futures = client.map(wait, inputs)
async for future, result in as_completed(futures, with_results=True):
print(result)
await client.close()
如果您不想使用async-await语法(这种情况比较少见),则应该忽略异步=关键字。它可能没有按照您的想象做。