从栅格中提取值时返回的NA

时间:2018-06-21 17:02:14

标签: r extract raster

我正在尝试使用空间点文件从显示熊的密度的栅格中提取值,我的脚本如下:

## set the working directory                                                         
##

setwd("~/Masters/Research Project/R Scripts/Focal_Raster")

## install packages to use                                                           
##

library(raster)
library (rgdal)

## import the raster and the csv file that will be used in the habitat 
## location      ##
## extraction                                                                       

r <- raster("bear_12zero2.tif")
r
plot(r, main = "Bear Density")

hist(r[])
head(r[],200)

locations<-read.csv("PA_AllBears_1.csv")
plot(locations$X,locations$Y, main="BearID")

## first need to assign a coordinate reference system to the csv file of 
## data        ##
## locations that we want to extract                                                 

crs(locations)
library(rgdal)
library(sp)
crs(r)

locationsC = SpatialPoints(cbind(locations$X, locations$Y), 
                       proj4string=CRS("+init=epsg:4326"))
cord.UTM <- spTransform(locationsC, crs(r))
cord.UTM


## Now we just need to extract the raster values from these locations                
##
TRI<-extract(r,cord.UTM,method='simple')

TRI

## need to write CSV file to join to the master datasheet with all varibles 
## in       ##

write.csv(TRI,'beardensity.csv')

运行脚本时,栅格显示:

> r
class       : RasterLayer 
dimensions  : 2000, 1394, 2788000  (nrow, ncol, ncell)
resolution  : 2248.04, 2248.04  (x, y)
extent      : -27831.02, 3105937, 4846432, 9342512  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=33 +datum=WGS84 +units=m +no_defs +ellps=WGS84 
+towgs84=0,0,0 
data source : C:\Users\Kate\Documents\Masters\Research Project\R 
Scripts\Focal_Raster\bear_12zero2.tif 
names       : bear_12zero2 

但是当我尝试使用csv位置提取值时,我已导入并转换为相同的投影,最终得到所有NA。我正在使用的另一个栅格具有类似的错误,该栅格具有相同的投影和相同的提取点。

我的结果如下:

> setwd("~/Masters/Research Project/R Scripts/Focal_Raster")
> library(raster)
> library (rgdal)
> r <- raster("bear_12zero2.tif")
> r
class       : RasterLayer 
dimensions  : 2000, 1394, 2788000  (nrow, ncol, ncell)
resolution  : 2248.04, 2248.04  (x, y)
extent      : -27831.02, 3105937, 4846432, 9342512  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=33 +datum=WGS84 +units=m +no_defs +ellps=WGS84 
+towgs84=0,0,0 
data source : C:\Users\Kate\Documents\Masters\Research Project\R 
Scripts\Focal_Raster\bear_12zero2.tif 
names       : bear_12zero2 

> plot(r, main = "Bear Density")
> locations<-read.csv("PA_AllBears_1.csv")
> plot(locations$X,locations$Y, main="BearID")
> summary(locations)
     BearID             X               Y              P_A     
 Min.   : 2.000   Min.   :18.37   Min.   :65.61   Min.   :0.0  
 1st Qu.: 5.000   1st Qu.:20.11   1st Qu.:66.34   1st Qu.:0.0  
 Median : 8.000   Median :21.09   Median :66.53   Median :0.5  
 Mean   : 8.273   Mean   :20.78   Mean   :66.51   Mean   :0.5  
 3rd Qu.:12.000   3rd Qu.:21.46   3rd Qu.:66.74   3rd Qu.:1.0  
 Max.   :15.000   Max.   :22.35   Max.   :67.08   Max.   :1.0  
> str(locations)
 'data.frame':  5500 obs. of  4 variables:
 $ BearID: int  2 2 2 2 2 2 2 2 2 2 ...
 $ X     : num  19.5 19 18.8 19.4 19.7 ...
 $ Y     : num  66.4 66.1 66.2 66.3 66.2 ...
 $ P_A   : int  0 0 0 0 0 0 0 0 0 0 ...
> crs(locations)
[1] NA
> library(rgdal)
> library(sp)
> crs(r)
CRS arguments:
 +proj=utm +zone=33 +datum=WGS84 +units=m +no_defs +ellps=WGS84 
 +towgs84=0,0,0 
> locationsC = SpatialPoints(cbind(locations$X, locations$Y), 
+                            proj4string=CRS(("+init=epsg:4326")))
> cord.UTM <- spTransform(locationsC, crs(r))
> cord.UTM
class       : SpatialPoints 
features    : 5500 
extent      : 650979.3, 825051.9, 7280884, 7457682  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=33 +datum=WGS84 +units=m +no_defs +ellps=WGS84 
+towgs84=0,0,0 
> TRI<-extract(r,cord.UTM,method='simple')
> TRI
   [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
  [37] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
  [73] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [109] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [145] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [181] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [217] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [253] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [289] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [325] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [361] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [397] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [433] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [469] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA
 [505] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
NA NA NA NA NA NA NA NA NA NA NA NA NA

 [ reached getOption("max.print") -- omitted 4500 entries ]

任何有用的技巧将不胜感激

2 个答案:

答案 0 :(得分:0)

下面的脚本是否给出了预期的结果?不检查您的数据就很难知道。我正在使用栅格的投影来重新投影坐标。

我也很关心这个表达:

CRS("+proj=utm")

您没有定义所需的UTM。我认为没有“ UTM”,“ UTM Zone 10 North”之类的东西。有关更多信息,请参见http://spatialreference.org/。如果不确定是否可以尝试以下网站:http://projfinder.com/,可以将地图放在应该放置数据的位置,输入一个坐标对,它会告诉您这些坐标最适合的投影是什么。

## set the working directory                                                         
##

setwd("~/Masters/Research Project/R Scripts/Focal_Raster")

## attach packages to use                                                           
##

library(raster)
library(rgdal)
library(sp)

## import the raster and the csv file that will be used in the habitat 
## location      ##
## extraction                                                                       

r <- raster("bear_12zero2.tif")
plot(r, main = "Bear Density")

hist(r[])
head(r[],200)

locations<-read.csv("locations.csv")
plot(locations$X,locations$Y, main="BearID")

## first need to assign a coordinate reference system to the csv file of
## locations that we want to extract                                                 

locationsC <- SpatialPoints(cbind(locations$X, locations$Y), 
                            proj4string=CRS("+init=epsg:4326"))
cord.UTM <- spTransform(locationsC, crs(r))

## Now we just need to extract the raster values from these locations                
##
TRI <- extract(r, cord.UTM, method='simple')

## need to write CSV file to join to the master datasheet with all varibles 
## in       ##

write.csv(TRI,'beardensity.csv')

答案 1 :(得分:0)

我在这个问题上遇到了同样的问题,我非常关注栅格问题。在@JMT2080AD 评论之后,我绘制并意识到我的点没有与我的光栅对齐。所以我改变了我设置积分的方式: 请注意“sites”和“stacked”是我之前导入的点和rasterStack

coordinates(sites) <- ~Longitude + Latitude

crs(sites) <- crs(stacked)

values <- extract(stacked, sites)

这立即解决了问题,因此也许这也能帮助将来遇到类似问题的其他人。谢谢。