无法证明Frama-C中的欧几里得分裂

时间:2018-06-21 11:15:07

标签: frama-c alt-ergo

我想证明Frama-C中这种欧几里得除法的循环实现:

/*@
  requires a >= 0 && 0 < b;
  ensures \result == a / b;
*/
int euclid_div(const int a, const int b)
{
  int q = 0;
  int r = a;

  /*@
    loop invariant a == b*q+r && r>=0;
    loop assigns q,r;
    loop variant r;
   */
  while (b <= r)
    {
      q++;
      r -= b;
    }
  return q;
}

但是发布条件无法自动证明(循环不变证明很好):

Goal Post-condition:
Let x = r + (b * euclid_div_0).
Assume {
  (* Pre-condition *)
  Have: (0 < b) /\ (0 <= x).
  (* Invariant *)
  Have: 0 <= r.
  (* Else *)
  Have: r < b.
}
Prove: (x / b) = euclid_div_0.

--------------------------------------------------------------------------------
Prover Alt-Ergo: Unknown (250ms).

它确实具有欧几里得分裂的所有假设,有人知道为什么它不能得出结论吗?

2 个答案:

答案 0 :(得分:3)

因为它是非线性算法,所以有时对于自动(SMT)求解器来说很难。

我以SMT2格式重新编写了目标,但Alt-Ergo 2.2,CVC4 1.5和Z3 4.6.0都无法证明这一点:

(set-logic QF_NIA)

(declare-const i Int)
(declare-const i_1 Int)
(declare-const i_2 Int)

(assert (>= i_1 0))
(assert (>  i_2 0))
(assert (>=  i 0))
(assert (<  i i_2))

; proved by alt-ergo 2.2 and z3 4.6.0 if these two asserts are uncommented
;(assert (<= i_1 10))
;(assert (<= i_2 10))

(assert
 (not
  (= i_1
     (div
      (+ i (* i_1 i_2))
      i_2 )
     )
  )
 )

(check-sat)

如果您这样更改后置条件,则Alt-Ergo会证明

ensures \exists int r ;
   a == b * \result + r && 0 <= r && r < b;

答案 1 :(得分:3)

Mohamed Iguernlala's answer所示,自动证明不适用于非线性算术。可以直接在GUI中使用WP进行交互式证明(有关更多信息,请参见section 2.3 of WP Manual),也可以使用coq(双击GUI的WP Goals选项卡的适当单元格以在Windows上启动coqide)进行交互性证明。相应的目标)。

通常最好在ACSL引理上使用coq,因为您可以专注于要手动证明​​的确切公式,而不必为要证明的代码的逻辑模型所困扰。使用这种策略,我可以通过以下中间引理证明您的后置条件:

/*@

// WP's interactive prover select lemmas based on the predicate and
// function names which appear in it, but does not take arithmetic operators
// into account . Hence the DIV definition.

logic integer DIV(integer a,integer b) = a / b ;

lemma div_rem:
  \forall integer a,b,q,r; a >=0 ==> 0 < b ==>  0 <= r < b ==>
  a == b*q+r ==> q == DIV(a, b);
*/

/*@
  requires a >= 0 && 0 < b;
  ensures \result == DIV(a, b);
*/
int euclid_div(const int a, const int b)
{
  int q = 0;
  int r = a;

  /*@
    loop invariant a == b*q+r;
    loop invariant r>=0;
    loop assigns q,r;
    loop variant r;
   */
  while (b <= r)
    {
      q++;
      r -= b;
    }
  /*@ assert 0<=r<b; */
  /*@ assert a == b*q+r; */
  return q;
}

更准确地说,引理本身由以下Coq脚本证明:

intros a b q prod Hb Ha Hle Hge.
unfold L_DIV.
generalize (Cdiv_cases a b).
intros Hcdiv; destruct Hcdiv.
clear H0.
rewrite H; auto with zarith.
clear H.

symmetry; apply (Zdiv_unique a b q (a-prod)); auto with zarith.
unfold prod; simpl.
assert (b*q = q*b); auto with zarith.

尽管后置条件仅需要使用适当的参数实例化引理。