命题不等于什么等于什么?

时间:2018-06-21 05:56:13

标签: idris

我最近asked a question并通过rewrite策略的一些应用解决了该问题。然后,我决定回顾一下my other questions上的代码审查,要求对我为形式化Hilbert(基于Euclid的)几何图形的尝试进行审查。

从第一个问题中,我了解到命题相等与布尔相等和命题相等之间是有区别的。回顾我为希尔伯特飞机写的一些公理,我广泛地使用了布尔等式。尽管我不确定100%,但根据收到的答案,我怀疑我不想使用布尔相等。

例如,采用以下公理:

  -- There exists 3 non-colinear points.
  three_non_colinear_pts : (a : point ** b : point ** c : point ** 
                           (colinear a b c = False, 
                           (a /= b) = True, 
                           (b /= c) = True, 
                           (a /= c) = True))

我尝试将其重写为不涉及= True

  -- There exists 3 non-colinear points.
  three_non_colinear_pts : (a : point ** b : point ** c : point ** 
                           (colinear a b c = False, 
                           (a /= b), 
                           (b /= c), 
                           (a /= c)))

总而言之,我从关于codereview的问题中获取了代码,删除了==并删除了= True

interface Plane line point where 
  -- Abstract notion for saying three points lie on the same line.
  colinear : point -> point -> point -> Bool
  coplanar : point -> point -> point -> Bool
  contains : line -> point -> Bool

  -- Intersection between two lines
  intersects_at : line -> line -> point -> Bool

  -- If two lines l and m contain a point a, they intersect at that point.
  intersection_criterion : (l : line) -> 
                           (m : line) ->
                           (a : point) ->
                           (contains l a = True) -> 
                           (contains m a = True) -> 
                           (intersects_at l m a = True)

  -- If l and m intersect at a point a, then they both contain a.
  intersection_result : (l : line) ->
                        (m : line) ->
                        (a : point) ->
                        (intersects_at l m a = True) ->
                        (contains l a = True, contains m a = True)

  -- For any two distinct points there is a line that contains them.
  line_contains_two_points : (a :point) -> 
                             (b : point) ->
                             (a /= b) ->
                             (l : line ** (contains l a = True, contains l b = True ))

  -- If two points are contained by l and m then l = m
  two_pts_define_line : (l : line) ->
                        (m : line) ->
                        (a : point) ->
                        (b : point) ->
                        (a /= b) ->
                        contains l a = True ->
                        contains l b = True ->
                        contains m a = True -> 
                        contains m b = True -> 
                        (l = m)

  same_line_same_pts : (l : line) ->
                       (m : line) ->
                       (a : point) ->
                       (b : point) ->
                       (l /= m) ->
                       contains l a = True ->
                       contains l b = True ->
                       contains m a = True ->
                       contains m b = True ->
                       (a = b)

  -- There exists 3 non-colinear points.
  three_non_colinear_pts : (a : point ** b : point ** c : point ** 
                           (colinear a b c = False, 
                           (a /= b), 
                           (b /= c), 
                           (a /= c)))

  -- Any line contains at least two points.
  contain_two_pts : (l : line) ->
                    (a : point ** b : point ** 
                    (contains l a = True, contains l b = True))

-- If two lines intersect at a point and they are not identical, that is the o-
-- nly point they intersect at.
intersect_at_most_one_point : Plane line point =>
  (l : line) -> (m : line) -> (a : point) -> (b : point) ->
  (l /= m) ->
  (intersects_at l m a = True) ->
  (intersects_at l m b = True) ->
  (a = b)

intersect_at_most_one_point l m a b l_not_m int_at_a int_at_b =
  same_line_same_pts
  l
  m
  a
  b
  l_not_m
  (fst (intersection_result l m a int_at_a))
  (fst (intersection_result l m b int_at_b))
  (snd (intersection_result l m a int_at_a))
  (snd (intersection_result l m b int_at_b))

出现错误:

  |
1 | interface Plane line point where
  |           ~~~~~~~~~~~~~~~~
When checking type of Main.line_contains_two_points:
Type mismatch between
        Bool (Type of _ /= _)
and
        Type (Expected type)

/home/dair/scratch/hilbert.idr:68:29:
   |
68 | intersect_at_most_one_point : Plane line point =>
   |                             ^
When checking type of Main.intersect_at_most_one_point:
No such variable Plane

因此,看来/=仅适用于布尔值。我一直找不到像这样的“命题” /=

data (/=) : a -> b -> Type where

命题不等于存在吗?还是我想从布尔型转换为命题式相等?

1 个答案:

答案 0 :(得分:3)

与布尔值a /= b等效的命题为a = b -> VoidVoid是没有构造函数的类型。因此,每当您有contra : Void时,就会出问题。因此,a = b -> Void可以理解为:如果您有a = b,则存在矛盾。通常写为Not (a = b),这只是简写(Not a = a -> Void)。

您有权改变命题平等。您甚至可以将contains : line -> point -> Bool之类的布尔属性更改为Contains : line -> point -> Type。随后contains l p = TrueContains l p,以及contains l p = FalseNot (Contains l p)

这是boolean blindness的情况,即使用prf : contains l p = True时,我们唯一知道的是contains l pTrue(并且编译器需要查看一下contains来猜测为什么是True)。另一方面,对于prf : Contains l p,您有一个构造的证明prf 为什么命题Contains l p成立。