我在使用pandas(pandas == 0.23.1)时遇到以下奇怪的错误:
import pandas as pd
df = pd.DataFrame({'t1': ["a","b","c"]*10000, 't2': ["x","y","z"]*10000, 'i1': list(range(5000))*6, 'i2': list(range(5000))*6, 'dummy':0})
# works fast with less memory
piv = df.pivot_table(values='dummy', index=['i1','i2'], columns=['t1','t2'])
d2 = df.copy()
d2.t1 = d2.t1.astype('category')
d2.t2 = d2.t2.astype('category')
# needs > 20GB of memory and takes for ever
piv2 = d2.pivot_table(values='dummy', index=['i1','i2'], columns=['t1','t2'])
我想知道这是否是预期的,并且我做错了什么,或者这是否是熊猫中的错误。为category
的dtype str
是否应该非常透明(在这种情况下)?
答案 0 :(得分:2)
这不是错误。 pandas.pivot_table
正在计算石斑鱼类别的笛卡尔积。
这是known intended behaviour。在Pandas v0.23.0中,我们看到了pandas.groupby
的observed
参数的引入。设置observed=True
仅包括观察到的组合;默认情况下为False
。此参数尚未推广到相关方法,例如pandas.pivot_table
。我认为应该如此。
但是现在让我们看看是什么意思。我们可以使用示例数据帧,看看我们print
结果时会发生什么。
我们使数据框大大缩小:
import pandas as pd
n = 10
df = pd.DataFrame({'t1': ["a","b","c"]*n, 't2': ["x","y","z"]*n,
'i1': list(range(int(n/2)))*6, 'i2': list(range(int(n/2)))*6,
'dummy':0})
这可能是您要寻找的。数据透视表中未显示类别的不可观察组合。
piv = df.pivot_table(values='dummy', index=['i1','i2'], columns=['t1','t2'])
print(piv)
t1 a b c
t2 x y z
i1 i2
0 0 0 0 0
1 1 0 0 0
2 2 0 0 0
3 3 0 0 0
4 4 0 0 0
对于类别,结果中将包括类别的所有组合,甚至是未观察到的组合。这在计算和内存上都是昂贵的。此外,数据帧由NaN
主导(来自未观察到的组合)。 不是您想要的。
d2 = df.copy()
d2.t1 = d2.t1.astype('category')
d2.t2 = d2.t2.astype('category')
piv2 = d2.pivot_table(values='dummy', index=['i1','i2'], columns=['t1','t2'])
print(piv2)
t1 a b c
t2 x y z x y z x y z
i1 i2
0 0 0.0 NaN NaN NaN 0.0 NaN NaN NaN 0.0
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 0.0 NaN NaN NaN 0.0 NaN NaN NaN 0.0
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 0.0 NaN NaN NaN 0.0 NaN NaN NaN 0.0
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 0.0 NaN NaN NaN 0.0 NaN NaN NaN 0.0
4 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 0.0 NaN NaN NaN 0.0 NaN NaN NaN 0.0