我正在研究Spark源代码,以了解dropDuplicates
方法的工作方式。在方法定义中,有一个方法Deduplicate
调用。但是我找不到它的定义或参考。如果有人能指出我正确的方向,那就太好了。链接为here。
答案 0 :(得分:3)
它是火花催化剂,请参见here。
由于实现有些混乱,我将添加一些解释。
Deduplicate
的当前实现是:
/** A logical plan for `dropDuplicates`. */
case class Deduplicate(
keys: Seq[Attribute],
child: LogicalPlan) extends UnaryNode {
override def output: Seq[Attribute] = child.output
}
目前尚不清楚这里会发生什么,但是如果您看一下Optimizer
类,则会看到ReplaceDeduplicateWithAggregate
对象,然后它会变得更加清晰。
/**
* Replaces logical [[Deduplicate]] operator with an [[Aggregate]] operator.
*/
object ReplaceDeduplicateWithAggregate extends Rule[LogicalPlan] {
def apply(plan: LogicalPlan): LogicalPlan = plan transform {
case Deduplicate(keys, child) if !child.isStreaming =>
val keyExprIds = keys.map(_.exprId)
val aggCols = child.output.map { attr =>
if (keyExprIds.contains(attr.exprId)) {
attr
} else {
Alias(new First(attr).toAggregateExpression(), attr.name)(attr.exprId)
}
}
// SPARK-22951: Physical aggregate operators distinguishes global aggregation and grouping
// aggregations by checking the number of grouping keys. The key difference here is that a
// global aggregation always returns at least one row even if there are no input rows. Here
// we append a literal when the grouping key list is empty so that the result aggregate
// operator is properly treated as a grouping aggregation.
val nonemptyKeys = if (keys.isEmpty) Literal(1) :: Nil else keys
Aggregate(nonemptyKeys, aggCols, child)
}
}
底线,对于df
,列为col1, col2, col3, col4
df.dropDuplicates("col1", "col2")
或多或少
df.groupBy("col1", "col2").agg(first("col3"), first("col4"))