我有一个大熊猫数据框,如下所示:
name,year
AAA,2015-11-02 22:00:00
AAA,2015-11-02 23:00:00
AAA,2015-11-03 00:00:00
AAA,2015-11-03 01:00:00
AAA,2015-11-03 02:00:00
AAA,2015-11-03 05:00:00
ZZZ,2015-09-01 00:00:00
ZZZ,2015-11-01 01:00:00
ZZZ,2015-11-01 07:00:00
ZZZ,2015-11-01 08:00:00
ZZZ,2015-11-01 09:00:00
ZZZ,2015-11-01 12:00:00
我想找出数据框的年份列中与特定名称有关的空白。 例如,
我想生成两个包含内容的csv文件:
CSV-1:
name,year
AAA,2015-11-02 22:00:00,0
AAA,2015-11-02 23:00:00,0
AAA,2015-11-03 00:00:00,0
AAA,2015-11-03 01:00:00,0
AAA,2015-11-03 02:00:00,2
AAA,2015-11-03 05:00:00,0
ZZZ,2015-09-01 00:00:00,0
ZZZ,2015-11-01 01:00:00,5
ZZZ,2015-11-01 07:00:00,0
ZZZ,2015-11-01 08:00:00,0
ZZZ,2015-11-01 09:00:00,2
ZZZ,2015-11-01 12:00:00,0
CSV-2:
name,prev_year,next_year,gaps
AAA,2015-11-03 02:00:00,2015-11-03 05:00:00,2015-11-03 03:00:00
AAA,2015-11-03 02:00:00,2015-11-03 05:00:00,2015-11-03 04:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 02:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 03:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 04:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 05:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 06:00:00
ZZZ,2015-11-01 09:00:00,2015-11-01 12:00:00,2015-11-01 10:00:00
ZZZ,2015-11-01 09:00:00,2015-11-01 12:00:00,2015-11-01 11:00:00
我尝试如下:
df['year'] = pd.to_datetime(df['year'], format='%Y-%m-%d %H:%M:%S')
mask = df.groupby("name").year.diff() > pd.Timedelta('0 days 01:00:00')
答案 0 :(得分:2)
要使您的数据框更完整,您需要重新分配生成的mask
。要获得总小时数,您只需将其除以1小时即可:
df['year'] = pd.to_datetime(df['year'], format='%Y-%m-%d %H:%M:%S')
df['Gap'] = (df.groupby("name").year.diff() / pd.to_timedelta('1 hour')).fillna(0)
这为我们提供了以下数据框:
name year Gap
0 AAA 2015-11-02 22:00:00 0.0
1 AAA 2015-11-02 23:00:00 1.0
2 AAA 2015-11-03 00:00:00 1.0
3 AAA 2015-11-03 01:00:00 1.0
4 AAA 2015-11-03 02:00:00 1.0
5 AAA 2015-11-03 05:00:00 3.0
6 ZZZ 2015-09-01 00:00:00 0.0
7 ZZZ 2015-11-01 07:00:00 6.0
8 ZZZ 2015-11-01 08:00:00 1.0
9 ZZZ 2015-11-01 09:00:00 1.0
10 ZZZ 2015-11-01 12:00:00 3.0
要获得与开始时间相邻的间隙并与“ csv-1”所需的间隙保持一致,我们只需将其上移一行,然后在填充na值之前减去一行即可。
df['Gap'] = ((df.groupby("name").year.diff() / pd.to_timedelta('1 hour')).shift(-1) - 1).fillna(0)
得到:
name year Gap
0 AAA 2015-11-02 22:00:00 0.0
1 AAA 2015-11-02 23:00:00 0.0
2 AAA 2015-11-03 00:00:00 0.0
3 AAA 2015-11-03 01:00:00 0.0
4 AAA 2015-11-03 02:00:00 2.0
5 AAA 2015-11-03 05:00:00 0.0
6 ZZZ 2015-11-01 01:00:00 5.0
7 ZZZ 2015-11-01 07:00:00 0.0
8 ZZZ 2015-11-01 08:00:00 0.0
9 ZZZ 2015-11-01 09:00:00 2.0
10 ZZZ 2015-11-01 12:00:00 0.0
为了获得第二个csv,我们可以执行以下操作:
df['prev_year'] = df['year']
df['next_year'] = df.groupby('name')['year'].shift(-1)
df.set_index('year', inplace=True)
df = df.groupby('name', as_index=False)\
.resample(rule='1H')\
.ffill()\
.reset_index()
gaps = df[df['year'] != df['prev_year']][['name', 'prev_year', 'next_year', 'year']]
gaps.rename({'year': 'gaps'}, index='columns', inplace=True)
首先,我们设置“之前”和“之后”列。然后,通过将索引更改为'year'
,我们可以使用.resample()
方法来填写所有丢失的小时数。通过在重新采样时使用ffill()
,我们将最后一个可用记录复制到添加的所有新行中。我们知道当'prev_year' != 'year'
时,我们位于框架中以前不存在的行中,因此是其中的空隙之一,因此我们只过滤这些行,选择所需的列并重命名它们。这给出了:
name prev_year next_year year
5 AAA 2015-11-03 02:00:00 2015-11-03 05:00:00 2015-11-03 03:00:00
6 AAA 2015-11-03 02:00:00 2015-11-03 05:00:00 2015-11-03 04:00:00
9 ZZZ 2015-11-01 01:00:00 2015-11-01 07:00:00 2015-11-01 02:00:00
10 ZZZ 2015-11-01 01:00:00 2015-11-01 07:00:00 2015-11-01 03:00:00
11 ZZZ 2015-11-01 01:00:00 2015-11-01 07:00:00 2015-11-01 04:00:00
12 ZZZ 2015-11-01 01:00:00 2015-11-01 07:00:00 2015-11-01 05:00:00
13 ZZZ 2015-11-01 01:00:00 2015-11-01 07:00:00 2015-11-01 06:00:00
17 ZZZ 2015-11-01 09:00:00 2015-11-01 12:00:00 2015-11-01 10:00:00
18 ZZZ 2015-11-01 09:00:00 2015-11-01 12:00:00 2015-11-01 11:00:00
总结一下,您的脚本可能如下所示:
df['year'] = pd.to_datetime(df['year'], format='%Y-%m-%d %H:%M:%S')
df['Gap'] = ((df.groupby("name").year.diff() / pd.to_timedelta('1 hour')).shift(-1) - 1).fillna(0)
df.to_csv('csv-1.csv', index=False)
df['prev_year'] = df['year']
df['next_year'] = df.groupby('name')['year'].shift(-1)
df.set_index('year', inplace=True)
df = df.groupby('name', as_index=False)\
.resample(rule='1H')\
.ffill()\
.reset_index()
gaps = df[df['year'] != df['prev_year']][['name', 'prev_year', 'next_year', 'year']]
gaps.rename({'year': 'gaps'}, index='columns', inplace=True)
gaps.to_csv('csv-2.csv', index=False)