训练MNIST数据时出现此错误,csvfiles来自Kaggle。有人可以告诉我我哪里出问题了吗?这是我的代码。 PyTorch的版本是0.4.0。
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.utils.data as data
import torchvision
import matplotlib.pyplot as plt
torch.manual_seed(1)
# Training Parameters
EPOCH = 20
BATCH_size = 15
LR = 0.001
img_row, img_col = 28, 28
# Networks structure
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(
in_channels=1, out_channels=32,
kernel_size=5, stride=1, padding=2
),
nn.ReLU(),
nn.Conv2d(32, 32, 5, 1, 2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
nn.Dropout(0.25)
)
self.conv2 = nn.Sequential(
nn.Conv2d(32, 64, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(64, 64, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Dropout(0.25)
)
self.out = nn.Sequential(
nn.Linear(64*7*7, 512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
output = self.out(x)
return output
# Torch Dataset
class Torch_Dataset(data.Dataset):
def __init__(self, root_dir, csvfile, img_rows, img_cols, train=True, transform=None):
self.root_dir = root_dir
self.transform = transform
self.train = train
if self.train:
y_data0 = pd.read_csv(csvfile, header=0, usecols=['label'])
y_data1 = np.array(y_data0)
self.y_data = torch.from_numpy(y_data1)
x_data0 = pd.read_csv(csvfile, header=0, usecols=[i for i in range(1, 785)])
x_data1 = np.array(x_data0)
x_data1 = x_data1.reshape(x_data1.shape[0], 1, img_rows, img_cols)
x_data1 = x_data1.astype('float32')
x_data1 /= 255
self.x_data = torch.from_numpy(x_data1)
else:
x_data0 = pd.read_csv(csvfile, header=0)
x_data1 = np.array(x_data0)
x_data1 = x_data1.reshape(x_data1.shape[0], 1, img_rows, img_cols)
x_data1 = x_data1.astype('float32')
x_data1 /= 255
self.x_data = torch.from_numpy(x_data1)
def __len__(self):
return len(self.x_data)
def __getitem__(self, idx):
if self.train:
img, target = self.x_data[idx], self.y_data[idx]
else:
img = self.x_data[idx]
target = None
# sample = {'img': img, 'target': target}
return img, target
train = Torch_Dataset(
root_dir='./', # root
csvfile='train.csv', # filename
img_rows=img_row, # image rows
img_cols=img_col, # image cols
train=True # train or test
)
# DataLoader
loader = data.DataLoader(
dataset=train, # torch dataset format
batch_size=BATCH_size, # mini batch size
shuffle=True, # shuffle the data
)
# train the data
cnn = CNN()
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
loss_f = nn.CrossEntropyLoss()
for epoch in range(EPOCH):
for step, (x, y) in enumerate(loader):
b_x = Variable(x)
b_y = Variable(y)
b_y = b_y.squeeze
output = cnn(b_x)
loss = loss_f(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
回溯(最近通话最近一次):
文件“ C:/ Users / Bryan Zoe / PycharmProjects / MNIST_TEST / PyTorch / test1.py”,第118行,在 损失= loss_f(输出,b_y)
文件“ C:\ Users \ Bryan Zoe \ Anaconda3 \ lib \ site-packages \ torch \ nn \ modules \ module.py”,第491行,位于__ 调用 __ 结果= self.forward(* input,** kwargs)
文件“ C:\ Users \ Bryan Zoe \ Anaconda3 \ lib \ site-packages \ torch \ nn \ modules \ loss.py”,行757,向前 _assert_no_grad(目标)
_assert_no_grad中的文件“ C:\ Users \ Bryan Zoe \ Anaconda3 \ lib \ site-packages \ torch \ nn \ modules \ loss.py”,第11行 断言不是tensor.requires_grad,\
AttributeError:“ builtin_function_or_method”对象没有属性“ requires_grad”
答案 0 :(得分:2)
您没有调用squeeze方法,这应该可以工作
b_y = b_y.squeeze()