我喜欢基于相同或不同日期的不同活动(ACT)创建一个序列数据库。如您所见,某些行可能包含NaN值。我需要最终数据来训练一系列活动的机器学习模型。
ID ACT1 ACT2 ACT3 ACT4 ACT5
0 2015-08-11 2015-08-16 2015-08-16 2015-09-22 2015-08-19
1 2014-07-16 2014-07-16 2014-09-16 NaT 2014-09-12
2 2016-07-16 NaT 2017-09-16 2017-09-16 2017-12-16
预期的输出将根据日期值进行拆分或合并,如下表所示:
ID Sequence1 Sequence2 Sequence3 Sequence4
0 ACT1 ACT2,ACT3 ACT5 ACT4
1 ACT1,ACT2 ACT5 ACT3
2 ACT1 ACT3,ACT4 ACT5
以下脚本将仅输出具有整个序列的字符串:
df['Sequence'] = df.loc[:, cols].apply(lambda dr: ','.join(df.loc[:, cols].columns[dr.dropna().argsort()]), axis=1)
Sequence
ACT1,ACT2,ACT3,ACT5,ACT4
ACT1,ACT2,ACT5,ACT3
ACT1,ACT3,ACT4,ACT5
答案 0 :(得分:1)
这是一个挑战,但我相信这对您有用。
from collections import defaultdict
import pandas as pd
data = {
'ACT1': [pd.Timestamp(year=2015, month=8, day=11),
pd.Timestamp(year=2014, month=7, day=16),
pd.Timestamp(year=2016, month=7, day=16)],
'ACT2': [pd.Timestamp(year=2015, month=8, day=16),
pd.Timestamp(year=2014, month=7, day=16),
np.nan],
'ACT3': [pd.Timestamp(year=2015, month=8, day=16),
pd.Timestamp(year=2014, month=9, day=16),
pd.Timestamp(year=2017, month=9, day=16)],
'ACT4': [pd.Timestamp(year=2015, month=9, day=22),
np.nan,
pd.Timestamp(year=2017, month=9, day=16)],
'ACT5': [pd.Timestamp(year=2015, month=8, day=19),
pd.Timestamp(year=2014, month=9, day=12),
pd.Timestamp(year=2017, month=12, day=16)]}
df = pd.DataFrame(data)
# Unstack so we can create groups
unstacked = df.unstack().reset_index()
# This will keep track of our sequence data
sequences = defaultdict(list)
# Here we get our groups, e.g., 'ACT1,ACT2', etc.;
# We group by date first, then by original index (0,1,2)
for i, g in unstacked.groupby([0, 'level_1']):
sequences[i[1]].append(','.join(g.level_0))
# How many sequences (columns) we're going to need
n_seq = len(max(sequences.values(), key=len))
# Any NaTs will always shift your data to the left,
# so to speak, so we need to right pad the rows
for k in sequences:
while len(sequences[k]) < n_seq:
sequences[k].append('')
# Create column labels and make new dataframe
columns = ['Sequence{}'.format(i) for i in range(1, n_seq + 1)]
print pd.DataFrame(list(sequences.values()), columns=columns)
Sequence1 Sequence2 Sequence3 Sequence4
0 ACT1 ACT2,ACT3 ACT5 ACT4
1 ACT1,ACT2 ACT5 ACT3
2 ACT1 ACT3,ACT4 ACT5