我正在尝试使用zbar识别/检测以下文档中的条形码。这是我从tutorial使用的代码,用于测试我所拥有的数据库。
from __future__ import print_function
import pyzbar.pyzbar as pyzbar
import numpy as np
import cv2
import imutils
import argparse
def decode(im):
# Find barcodes and QR codes
decodedObjects = pyzbar.decode(im)
# Print results
for obj in decodedObjects:
print('Type : ', obj.type)
print('Data : ', obj.data, '\n')
return decodedObjects # Display barcode and QR code location
def display(im, decodedObjects):
# Loop over all decoded objects
for decodedObject in decodedObjects:
points = decodedObject.polygon
# If the points do not form a quad, find convex hull
if len(points) > 4:
hull = cv2.convexHull(np.array([point for point in points], dtype=np.float32))
hull = list(map(tuple, np.squeeze(hull)))
else:
hull = points
# Number of points in the convex hull
n = len(hull)
# Draw the convext hull
for j in range(0, n):
cv2.line(im, hull[j], hull[(j + 1) % n], (0, 255, 0), 50) # Display results
cv2.imshow("Results", imutils.resize(im, 500))
cv2.waitKey(0) # Main
def display_ppn(im, decoded_objects, draw='rect'):
if draw == 'rect':
all_barcodes = []
for decoded_object in decoded_objects:
points = [[x, y] for x, y in (decoded_object.polygon)]
all_barcodes.append(points)
print(all_barcodes)
else:
all_barcodes = []
for decoded_object in decoded_objects:
points = [[x, y] for x, y in (decoded_object.polygon)]
all_barcodes.append(points)
print(all_barcodes)
for barcode in all_barcodes:
cv2.polylines(im, [np.array(barcode)], True, (0, 255, 0), 3)
cv2.imshow("Results", imutils.resize(im, 500))
cv2.waitKey(0)
if __name__ == '__main__':
# Creates parser
parser = argparse.ArgumentParser()
# parser arguments:
parser.add_argument('image', type=str, help='Path to image of form')
args = parser.parse_args()
# Read image
im = cv2.imread(args.image)
decodedObjects = decode(im)
display_ppn(im, decodedObjects)
虽然有些文件工作正常,但大多数文件都没有。有人可以帮助我理解为什么会这样,以及我如何获得100%检测?增加条形码的大小或类型会有帮助吗?我拥有的输入图像将始终被二进制化。
工作样本
样本失败
答案 0 :(得分:0)
拉直可以帮助识别软件找到条形码,但是由于混叠,这些代码中的许多条形码的条和空格都变窄或变粗。我不希望100%成功读取每个代码。我建议您使用条形码周围的空白用软件隔离条形码标签,并对下面显示的字符执行OCR。