假设我们有两个数据框,如下所示:
df1 <- data.frame(Team1 = c("A","B","C"), Team2 = c("D","E","F"), Winner = c("A","E","F"))
df2 <- data.frame(Country = c("A","B","C","D","E","F"), Index = c(1,2,3,4,5,6))
我想要的是在df2中创建三列作为Team1_index,Team2_index和Winner_index。
Team1 Team2 Winner Team1_index Team2_index Winner_index
A D A 1 4 1
B E E 2 5 5
C F F 3 6 6
我尝试了很多方法但失败了。提示和建议!
答案 0 :(得分:1)
如果您只有少量列,则可以使用匹配函数,如示例所示:
import possibleMatches from 'reducers.js';
combineReducers({ possibleMatches });
答案 1 :(得分:1)
如果您有更多列,您可能会寻找更系统的解决方案,但如果它只是三个案例,那么应该这样做:
library("tidyverse")
df1 <- data.frame(Team1 = c("A","B","C"), Team2 = c("D","E","F"), Winner = c("A","E","F"))
df2 <- data.frame(Country = c("A","B","C","D","E","F"), Index = c(1,2,3,4,5,6))
df1 %>%
left_join(df2 %>% rename(Team1 = Country), by = "Team1") %>%
rename(Team1_Index = Index) %>%
left_join(df2 %>% rename(Team2 = Country), by = "Team2") %>%
rename(Team2_Index = Index) %>%
left_join(df2 %>% rename(Winner = Country), by = "Winner") %>%
rename(Winner_Index = Index)
#> Warning: Column `Team1` joining factors with different levels, coercing to
#> character vector
#> Warning: Column `Team2` joining factors with different levels, coercing to
#> character vector
#> Warning: Column `Winner` joining factors with different levels, coercing to
#> character vector
#> Team1 Team2 Winner Team1_Index Team2_Index Winner_Index
#> 1 A D A 1 4 1
#> 2 B E E 2 5 5
#> 3 C F F 3 6 6
您可以安全地忽略警告。
答案 2 :(得分:1)
将新列作为因素:
df1[paste0(colnames(df1),"_index")] <- lapply(df1,factor,df2$Country,df2$Index)
# Team1 Team2 Winner Team1_index Team2_index Winner_index
# 1 A D A 1 4 1
# 2 B E E 2 5 5
# 3 C F F 3 6 6
将新列设为数字:
df1[paste0(colnames(df1),"_index")] <-
lapply(df1,function(x) as.numeric(as.character(factor(x,df2$Country,df2$Index))))
# Team1 Team2 Winner Team1_index Team2_index Winner_index
# 1 A D A 1 4 1
# 2 B E E 2 5 5
# 3 C F F 3 6 6
请注意,对于此特定情况(索引从1递增1),此较短版本可用:
df1[paste0(colnames(df1),"_index")] <-
lapply(df1,function(x) as.numeric(factor(x,df2$Country)))
答案 3 :(得分:0)
以下是使用match
和cbind
的其他选项。
df3 <- as.matrix(df1)
colnames(df3) <- paste0(colnames(df3), "_index")
# match the positions
df3[] <- match(df3, df2$Country)
cbind(df1, df3)
# Team1 Team2 Winner Team1_index Team2_index Winner_index
#1 A D A 1 4 1
#2 B E E 2 5 5
#3 C F F 3 6 6
df3
被创建为矩阵,即具有维度属性的向量,这样我们就可以立即用match
(向量)的结果替换其条目,而不需要重复每列的代码。
或者一气呵成
df1[paste0(colnames(df1), "_index")] <- match(as.matrix(df1), df2$Country)
但请注意,这会忽略index
的{{1}}列。
感谢@Moody_Mudskipper,我们也可以将其写成更通用的
df2
答案 4 :(得分:0)
我有一个几乎使用data.table的解决方案,使用melt
和dacst
来改变形状
library(data.table)
df1 <- data.table(Team1 = c("A","B","C"), Team2 = c("D","E","F"), Winner = c("A","E","F"))
df2 <- data.table(Country = c("A","B","C","D","E","F"), Index = c(1,2,3,4,5,6))
melt(data = df1 , id.vars = )
plouf <- merge(df2,melt(df1,measure = 1:2), by.x = "Country", by.y = "value")
plouf[,winneridx := Index[Country == Winner]]
dcast(plouf,Country+winneridx~variable,value.var = "Index")
Country winneridx Team1 Team2
1: A 1 1 NA
2: B 5 2 NA
3: C 6 3 NA
4: D 1 NA 4
5: E 5 NA 5
6: F 6 NA 6
答案 5 :(得分:0)
这与giocomai的回答基本相同,只是使用purrr
来帮助消除重复:
library(rlang)
library(dplyr)
getIndexCols <- function(df1, df2, colName){
idxColName <- sym(paste0(colName, "_Index"))
df1 %>% left_join(df2 %>% rename(!! sym(colName) := Country, !! idxColName := Index))
}
names(df1) %>% purrr::map(~ getIndexCols(df1, df2, .)) %>% reduce(~ left_join(.x, .y))
答案 6 :(得分:0)
您可以使用chartr
这将考虑国家/地区列和索引列:
df3=as.matrix(setNames(df1,paste0(names(df1),"_index")))
cbind(df1,chartr(paste0(df2$Country,collapse=""),paste0(df2$Index,collapse=""),df3))
Team1 Team2 Winner Team1_index Team2_index Winner_index
1 A D A 1 4 1
2 B E E 2 5 5
3 C F F 3 6 6
你也可以这样做:
cbind(df1,do.call(chartr,c(as.list(sapply(unname(df2),paste,collapse="")),list(df3))))
Team1 Team2 Winner Team1_index Team2_index Winner_index
1 A D A 1 4 1
2 B E E 2 5 5
3 C F F 3 6 6