如何在Tensorflow

时间:2018-06-18 17:53:03

标签: tensorflow

我的代码与Gradient Descent完美运行,但我想使用Adam Optimizer比较我的算法的有效性,所以我尝试修改以下代码:

# Import MNIST data
#import input_data
#mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
#fashion_mnist = input_data.read_data_sets('data/fashion')
import tensorflow as tf

# Set parameters
learning_rate = 0.01 #1e-4
training_iteration = 30
batch_size = 100
display_step = 2

# TF graph input
x = tf.placeholder("float", [None, 784]) # mnist data image of shape 28*28=784
y = tf.placeholder("float", [None, 10]) # 0-9 digits recognition => 10 classes
#regularizer = tf.reduce_sum(tf.square(y))
# Create a model

# Set model weights
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

with tf.name_scope("Wx_b") as scope:
    # Construct a linear model
    model = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax

# Add summary ops to collect data
w_h = tf.summary.histogram("weights", W)
b_h = tf.summary.histogram("biases", b)

# More name scopes will clean up graph representation
with tf.name_scope("cost_function") as scope:
    # Minimize error using cross entropy
    # Cross entropy
    cost_function = -tf.reduce_sum(y*tf.log(model))
    # Create a summary to monitor the cost function
    tf.summary.scalar("cost_function", cost_function)

with tf.name_scope("train") as scope:
    # Gradient descent
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)

# Initializing the variables
#init = tf.initialize_all_variables() 
init = tf.global_variables_initializer()

# Merge all summaries into a single operator
merged_summary_op = tf.summary.merge_all()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)


    summary_writer = tf.summary.FileWriter('/home/raed/Tensorflow/tensorflow_demo', graph_def =sess.graph_def)
    #writer.add_graph(sess.graph_def)

    # Training cycle
    for iteration in range(training_iteration):
        avg_cost = 0.
        total_batch = int(mnist.train.num_examples/batch_size)
        # Loop over all batches
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            # Fit training using batch data
            sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
            # Compute the average loss
            avg_cost += sess.run(cost_function, feed_dict={x: batch_xs, y: batch_ys})/total_batch
            # Write logs for each iteration
            summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys})
            summary_writer.add_summary(summary_str, iteration*total_batch + i)
        # Display logs per iteration step
        if iteration % display_step == 0:
            print ("Iteration:" "%04d" % (iteration + 1), "cost=", "{:.9f}".format(avg_cost))

    print ("Tuning completed!")

    # Test the model
    predictions = tf.equal(tf.argmax(model, 1), tf.argmax(y, 1))
    # Calculate accuracy
    accuracy = tf.reduce_mean(tf.cast(predictions, "float"))
    print ("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))

使用Adam Optimizer我尝试更改以下行:

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)

并将其替换为AdamOptimizer:

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost_function)

当我运行代码时,我得到了一些迭代,然后它因以下错误而停止。

InvalidArgumentError (see above for traceback): Nan in summary histogram for: weights
     [[Node: weights = HistogramSummary[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](weights/tag, Variable/read)]]

你能不能帮我解决这个问题,提前谢谢

1 个答案:

答案 0 :(得分:0)

问题是权重被初始化为零W = tf.Variable(tf.zeros([784, 10]))这就是为什么你得到Nan作为权重。 你需要用一些初始化器将它们初始化,即正态分布如下

W = tf.Variable(tf.random_normal([784, 10], stddev=0.35),
                      name="weights")