我正在努力将文件编织为html,执行以下操作: 1.保留中间降价文件 2.创造"数字"工作目录中的文件夹,用于保存代码块图 3.在github上查看md文件时,将显示以代码块编写的图。
我可以创建并保存中间降价文件,但是没有创建图形文件夹,即使上传独立的png也不会在github上显示图形。
我想如何设置我的YAML?这是我的git hub帐户及相关的md文件。
https://github.com/ndonawa/RepData_PeerAssessment1/blob/master/PA1_template.md
---
title: "Course5Project1"
author: "Nevon"
date: "June 12, 2018"
output:
html_document:
keep_md: yes
---
```{r setup, include=TRUE}
knitr::opts_chunk$set(echo = TRUE)
```
1. First we load the walking activity data
```{r}
##Load Data
fitness <- read.csv("activity.csv")
df <- data.frame(fitness)
```
2. Next we will calculate base measure
```{r}
## Calculations/ Metrics
stepsbyday <- aggregate(steps ~ date, data = df, sum) ## steps per day
avgsteps <- mean(stepsbyday$steps)## average steps by day
median <- median(stepsbyday$steps)## median steps by day
```
3. Following the base measures we plot the average steps by day
```{r}
##Plot Histogram & Report Figures
hist(stepsbyday$steps, xlab = "Number of Steps Per Day", main = "Total Steps Per Day", breaks = 4, col = "royal blue")
## Add Metrics
abline(v = median(stepsbyday$steps), col = "red", lwd = 10)
abline(v = mean(stepsbyday$steps), col = "yellow", lwd = 2)
legend(x = "topright", c("Median", "Mean"), col =c("red", "yellow"), lwd = c(2, 2, 2 ))
```
4. Afterwards we will look at the steps per intervals 4a.First removing NAs by creating new data set than plotting the figures
```{r}
## Calculate Steps by Interval
library(ggplot2)
Intervals <- df[!is.na(df$steps), ] ##remove NAs
intrv <- aggregate(steps ~ interval, data = Intervals, mean)
## Create Plot
g <- ggplot(intrv, aes(x=intrv$interval, y = intrv$steps), xlab = "Intervals", ylab = "Avg Steps")
g+geom_line() + xlab("Intervals") + ylab("Avg Steps") + ggtitle("Avg number of Stepgs by Intervals")
##Find Max Step Interval
max <- max(intrv)
print(max)
```
5. Then we calculate the weight of missing values, i.e(how many missing values are there)
5a. Also we will replace missing values using the value of the average steps per day we calculated before & create clean data set
5b. Furthermore we will create a new data set which merges orignal data set with new clean data
5c. Lastly we will plot the new set & find new measure
```{r}
## Calculate Weight of Missing Values
ALLNAs <- as.numeric(is.na(df))
Missing_Val <- sum(ALLNAs)
print(Missing_Val)
##Substitute NAs with average steps per date
library(plyr)
dfvalues <- Intervals
avgsteps_day <- tapply(Intervals$steps, Intervals$interval, mean, na.rm = TRUE, simplify = T)
NAdata <- is.na(dfvalues$steps)
dfvalues$steps[NAdata] <- avgsteps_day[as.character(dfvalues$interval[NAdata])]
newstepstotal <- tapply(dfvalues$steps,dfvalues$date, sum, na.rm = TRUE, simplify = T) ## New data Frame
newstepstotal <- newstepstotal[!is.na(newstepstotal)]
##Plot New Hist & Find New Metrics
hist(x = newstepstotal,
col = "royal blue",
breaks = 10,
xlab = "Daily Steps")
##Find Metrics of Newsteptotal
summary(newstepstotal)
```
6.The last part of our anlysis will be to explore differences between weekend & weekdays
6a. First create new variable for weekends/weekdays
6b. Next find value of steps per daytype
6c. Lastly we'll plot the data
```{r}
## Segment Data into Weekdays / Weekends
wd <- !(weekdays(as.Date(df$date)) %in% c("Saturday", "Sunday"))
wknd <- c("","")
for (i in 1:length(wd)) {
if(wd[i]) {wknd[i] <- "Weekday"} else {wknd[i] <- "Weekend"}
}
df[, "dayType"] <- factor(wknd) ##new daytpe variable
wk_df <- aggregate(steps~dayType+interval, data = df, mean)##average steps per daytype
library(lattice)
xyplot(steps ~ interval | factor(dayType),
layout = c(1,2),
xlab = "Interval",
ylab = "Number of Steps",
type = "l",
lty=1,
data = wk_df)
```
答案 0 :(得分:0)
md文件确实包含图。 R块形成.Rmd文件,
```{r}
##Plot Histogram & Report Figures
hist(stepsbyday$steps, xlab = "Number of Steps Per Day", main = "Total Steps Per Day", breaks = 4, col = "royal blue")
## Add Metrics
abline(v = median(stepsbyday$steps), col = "red", lwd = 10)
abline(v = mean(stepsbyday$steps), col = "yellow", lwd = 2)
legend(x = "topright", c("Median", "Mean"), col =c("red", "yellow"), lwd = c(2, 2, 2 ))
```
在.md文件中生成以下内容:
```r
##Plot Histogram & Report Figures
hist(stepsbyday$steps, xlab = "Number of Steps Per Day", main = "Total Steps Per Day", breaks = 4, col = "royal blue")
## Add Metrics
abline(v = median(stepsbyday$steps), col = "red", lwd = 10)
abline(v = mean(stepsbyday$steps), col = "yellow", lwd = 2)
legend(x = "topright", c("Median", "Mean"), col =c("red", "yellow"), lwd = c(2, 2, 2 ))
```
![](PA1_template_files/figure-html/unnamed-chunk-3-1.png)<!-- -->
最后一行![](PA1_template_files/figure-html/unnamed-chunk-3-1.png)<!-- -->
是将被转换为html的markdown标记:
<p><img src="" /><!-- --></p>
该html将在.html文档中显示图。