当我在30多列上进行特色工程设计以创建大约200多列时,我收到了错误消息。这不是失败的工作,但ERROR显示。我想知道如何避免这种情况。
Spark - 2.3.1 Python - 3.6
群集配置 - 1个主站 - 32 GB RAM,16个核心4个从站 - 16 GB RAM,8个核心
输入数据 - 带有快速压缩的镶木地板文件的8个分区。
My Spark-Submit - >
spark-submit --master spark://192.168.60.20:7077 --num-executors 4 --executor-cores 5 --executor-memory 10G --driver-cores 5 --driver-memory 25G --conf spark.sql.shuffle.partitions=60 --conf spark.driver.maxResultSize=2G --conf "spark.executor.extraJavaOptions=-XX:+UseParallelGC" --conf spark.scheduler.listenerbus.eventqueue.capacity=20000 --conf spark.sql.codegen=true /appdata/bblite-codebase/pipeline_data_test_run.py > /appdata/bblite-data/logs/log_10_iter_pipeline_8_partitions_33_col.txt
下面的Stack-Trace -
ERROR CodeGenerator:91 - failed to compile: org.codehaus.janino.InternalCompilerException: Compiling "GeneratedClass": Code of method "processNext()V" of class "org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3426" grows beyond 64 KB
org.codehaus.janino.InternalCompilerException: Compiling "GeneratedClass": Code of method "processNext()V" of class "org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3426" grows beyond 64 KB
at org.codehaus.janino.UnitCompiler.compileUnit(UnitCompiler.java:361)
at org.codehaus.janino.SimpleCompiler.cook(SimpleCompiler.java:234)
at org.codehaus.janino.SimpleCompiler.compileToClassLoader(SimpleCompiler.java:446)
at org.codehaus.janino.ClassBodyEvaluator.compileToClass(ClassBodyEvaluator.java:313)
at org.codehaus.janino.ClassBodyEvaluator.cook(ClassBodyEvaluator.java:235)
at org.codehaus.janino.SimpleCompiler.cook(SimpleCompiler.java:204)
at org.codehaus.commons.compiler.Cookable.cook(Cookable.java:80)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$.org$apache$spark$sql$catalyst$expressions$codegen$CodeGenerator$$doCompile(CodeGenerator.scala:1417)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$$anon$1.load(CodeGenerator.scala:1493)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$$anon$1.load(CodeGenerator.scala:1490)
at org.spark_project.guava.cache.LocalCache$LoadingValueReference.loadFuture(LocalCache.java:3599)
at org.spark_project.guava.cache.LocalCache$Segment.loadSync(LocalCache.java:2379)
at org.spark_project.guava.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2342)
at org.spark_project.guava.cache.LocalCache$Segment.get(LocalCache.java:2257)
at org.spark_project.guava.cache.LocalCache.get(LocalCache.java:4000)
at org.spark_project.guava.cache.LocalCache.getOrLoad(LocalCache.java:4004)
at org.spark_project.guava.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4874)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$.compile(CodeGenerator.scala:1365)
at org.apache.spark.sql.execution.WholeStageCodegenExec.liftedTree1$1(WholeStageCodegenExec.scala:579)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:578)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.prepareShuffleDependency(ShuffleExchangeExec.scala:92)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$doExecute$1.apply(ShuffleExchangeExec.scala:128)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$doExecute$1.apply(ShuffleExchangeExec.scala:119)
at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.doExecute(ShuffleExchangeExec.scala:119)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:371)
at org.apache.spark.sql.execution.SortExec.inputRDDs(SortExec.scala:121)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:605)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.joins.SortMergeJoinExec.doExecute(SortMergeJoinExec.scala:150)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.ProjectExec.doExecute(basicPhysicalOperators.scala:70)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.joins.SortMergeJoinExec.doExecute(SortMergeJoinExec.scala:150)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.ProjectExec.doExecute(basicPhysicalOperators.scala:70)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.columnar.InMemoryRelation.buildBuffers(InMemoryRelation.scala:107)
at org.apache.spark.sql.execution.columnar.InMemoryRelation.<init>(InMemoryRelation.scala:102)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$.apply(InMemoryRelation.scala:43)
at org.apache.spark.sql.execution.CacheManager$$anonfun$cacheQuery$1.apply(CacheManager.scala:97)
at org.apache.spark.sql.execution.CacheManager.writeLock(CacheManager.scala:67)
at org.apache.spark.sql.execution.CacheManager.cacheQuery(CacheManager.scala:91)
at org.apache.spark.sql.Dataset.persist(Dataset.scala:2924)
at sun.reflect.GeneratedMethodAccessor78.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.codehaus.janino.InternalCompilerException: Code of method "processNext()V" of class "org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3426" grows beyond 64 KB
答案 0 :(得分:6)
问题是当使用DataFrame和Dataset的程序使用Catalyst生成的Java程序编译成Java字节码时,一个方法的字节码大小不能超过64 KB,这与Java类的限制相冲突file,这是一个发生的异常。
隐藏错误:
spark.sql.codegen.wholeStage= "false"
解决方法:
为了避免由于上述限制而发生异常,在Spark中,解决方案是在Catalyst生成Java程序时将编译并将可能超过64 KB的Java字节码的方法拆分为多个方法它具有已经完成了。
在管道中使用持久性或任何其他逻辑分隔
答案 1 :(得分:0)
如vaquar所写,在管道中引入逻辑分隔应该会有所帮助。
削减血统并在计划中引入突破的一种方法似乎是
DF -> RDD -> DF
往返转换:
df = spark_session.sparkContext.createDataFrame(df.rdd, schema=df.schema)
在《高性能Spark》一书中,他们进一步提到使用基础Java RDD(即使用
)进行此操作更好(更快) j_rdd = df._jdf.toJavaRDD()
及其架构j_schema = df._jdf.schema()
,以构造一个新的Java DataFrame并将其最终转换回PySpark DataFrame:
sql_ctx = df.sql_ctx
java_sql_context = sql_ctx._jsqlContext
new_java_df = java_sql_context.createDataFrame(j_rdd, j_schema)
new_df = DataFrame(new_java_df, sql_ctx)
答案 2 :(得分:0)
我们通过在代码中添加额外的“检查点”来解决此错误。
Checkpoints =在我们的案例s3中,您需要将数据帧(数据)写回到磁盘,然后在一个新的数据帧中读回它,这将导致清空JVM Spark容器并重新启动新代码的过程
检查点详细信息
https://github.com/JerryLead/SparkInternals/blob/master/markdown/english/6-CacheAndCheckpoint.md
答案 3 :(得分:0)
如果您使用的是pyspark 2.3+,请尝试
spark = SparkSession.builder.master("local").appName("tow-way")\
.config("spark.sql.codegen.wholeStage", False)\ ## <-- add this line
.getOrCreate()