我正在测试Scikitlearn的一些功能,虽然他们的example对我来说很好并且返回一个剪影数字,当我在Iris数据集上做等效时它会显示一个聚类,然后总是输出0平均轮廓:
from sklearn import datasets
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
iris = datasets.load_iris()
print(dir(iris))
print(iris.DESCR)
#print(iris.data[:,1:3]) second and third part of each, columns.
X = iris.data[:, 1:3]
for i in range(2,11):
model = KMeans(n_clusters=i, random_state=0)
model.fit(X)
#print(model.labels_) #Different number for each "cluster" found.
centroids = model.cluster_centers_
#Separate xs [:, 0], ys [:,1] and scatter plot:
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=170, zorder=10, c='m')
plt.scatter(X[:, 0], X[:, 1], c=model.labels_)
#print(plt.scatter.__doc__) # <--- what are the arguments?
plt.xlabel("Sepal width")
plt.ylabel("Petal length")
print(X)
print(model.labels_)
print('For %d clusters the average silhouette score is %d' % (i, silhouette_score(X, model.labels_)))
plt.show()
为什么它会这样做,因为它似乎给它一个类似的X数组和标签作为Scikit示例?
答案 0 :(得分:2)
将print语句切换为:
print('For %f clusters the average silhouette score is %f' % (i, silhouette_score(X, model.labels_)))
或者:
print('For {} clusters the average silhouette score is {}'.format(i, silhouette_score(X, model.labels_)))
或者:
print(f"For {i} clusters the average silhouette score is {silhouette_score(X, model.labels_)}")
...解决了这个问题。
如@shahaf在评论中所述,您正在从float转换为int(%d)。