keras输入形状等于输出形状卷积误差

时间:2018-06-16 16:49:29

标签: python keras theano convolution convolutional-neural-network

我是使用theano后端的keras的新手,我想使用卷积创建一个CNN知道输入形状等于输出形状(1,33,33)

model = Sequential()
input_shape=(33,33,1)
model.add(Convolution2D(64, (9, 9), padding='same',         input_shape=input_shape, activation='relu'))
model.add(Convolution2D(32, (1, 1), padding='same', activation='relu'))
model.add(Convolution2D(1, (5, 5), padding='same', ))
model.compile(Adam(lr=0.001), 'mse')
model.summary()
model.fit(inputs, X, batch_size=128, epochs=5, shuffle='batch')    

摘要秀

Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_66 (Conv2D)           (None, 33, 33, 64)        5248      
_________________________________________________________________
conv2d_67 (Conv2D)           (None, 33, 33, 32)        2080      
_________________________________________________________________
conv2d_68 (Conv2D)           (None, 33, 33, 1)         801       
=================================================================
Total params: 8,129
Trainable params: 8,129
Non-trainable params: 0

和错误

ValueError: Error when checking input: expected conv2d_66_input to have 4 dimensions, but got array with shape (33, 33, 1)

我还尝试在输入和输出4d

中添加维度
input=np.expand_dims(inputs,axis=0)

但我总是遇到同样的问题

谢谢你的帮助。

0 个答案:

没有答案