我有两个数据帧。一个用于发票明细(df_inv),另一个用于针对发票的收集详细信息(df_coll)。 一张发票可能有多个收款/凭证。 发票表有大约30列,现在我们只检查3列进行此计算(发票号,预期金额,到期日) 类似的集合表有多个变量,对于这种情况,我们考虑3列(发票号,凭证日期,贷方金额) PS:一张300美元的发票可以在3个不同日期通过3张优惠券(每张100美元)获得。贷记金额也可能小于或大于预期金额。 根据发票表中的发票号码(唯一),我需要从汇票表中找到相应的凭证,根据凭证日期按升序排序,找到付款延迟(df_coll $ VoucherDate - df_inv $ DueDate ),然后计算每张发票的加权平均值。
df_inv中的x4,在df_coll中没有相应的条目。因此它将返回NA
加权平均值计算(包含2张付款凭证的1张发票):
((1st pymt amt* 1st delay days)+ (2nd pymt amt* 2nd delay days))/((% of total credited amount)*(expected amount))
下面的示例数据,
发票表(df_inv)
Invoice No Expected Amount Due Date
x1 1400 02-01-2012
x2 850 20-04-2012
x3 1300 30-09-2012
x4 1500 25-01-2013
收藏表(df_coll)
Invoice No Voucher Date Credit Amount
x1 26-11-2012 100
x2 24-10-2012 200
x1 11-05-2012 300
x1 22-08-2013 100
x2 12-07-2013 500
x3 30-01-2014 600
x2 24-06-2012 100
x3 31-11-2012 700
x1 29-02-2012 800
答案 0 :(得分:0)
这是一个仅使用基数R的可能解决方案:
#################### Recreate your input data.frame's ##################
df_inv <-
data.frame(InvoiceNo=c("x1","x2","x3","x4"),
Expected=c(1400,850,1300,1500),
AmountDueDate=c("02-01-2012","20-04-2012","30-09-2012","25-01-2013"),
stringsAsFactors=FALSE)
df_coll <-
data.frame(InvoiceNo=c("x1","x2","x1","x1","x2","x3","x2","x3","x1"),
VoucherDate=c("26-11-2012","24-10-2012","11-05-2012","22-08-2013",
"12-07-2013","30-01-2014","24-06-2012","30-11-2012","29-02-2012"),
CreditAmount=c(100,200,300,100,500,600,100,700,800),
stringsAsFactors=FALSE)
df_inv$AmountDueDate <- as.Date(df_inv$AmountDueDate,format='%d-%m-%Y')
df_coll$VoucherDate <- as.Date(df_coll$VoucherDate,format='%d-%m-%Y')
###########################################################################
m <- merge(df_inv,df_coll,by="InvoiceNo",all.x=TRUE,all.y=FALSE)
m$CrdAmntWeighted <- m$CreditAmount * as.numeric(m$VoucherDate - m$AmountDueDate)
m$TotCredAmnt <- ave(m$CreditAmount,m$InvoiceNo,FUN=sum)
m$TotCrdAmntWeighted <- ave(m$CrdAmntWeighted,m$InvoiceNo,FUN=sum)
m$WeightedAvg <- m$TotCrdAmntWeighted / ((m$TotCredAmnt / m$Expected) * m$Expected)
final <- m[!duplicated(m$InvoiceNo),c('InvoiceNo','Expected','TotCredAmnt','WeightedAvg')]
> final
InvoiceNo Expected TotCredAmnt WeightedAvg
1 x1 1400 1300 137.0000
5 x2 850 800 334.8750
8 x3 1300 1300 257.6154
10 x4 1500 NA NA