我想对矩阵进行硬阈值处理,使得低于某个数字的所有值都设置为零。但是,我希望该阈值随列变化(即每列具有其自己的阈值)。我怎么能在R中这样做?
以下是简单的设置:
set.seed(1)
A <- matrix(runif(n = 12),nrow = 4)
# [,1] [,2] [,3]
#[1,] 0.2655087 0.2016819 0.62911404
#[2,] 0.3721239 0.8983897 0.06178627
#[3,] 0.5728534 0.9446753 0.20597457
#[4,] 0.9082078 0.6607978 0.17655675
threshholds <- c(0.3,1,0.5)
#wanted result:
# [,1] [,2] [,3]
#[1,] 0 0 0.62911404
#[2,] 0.3721239 0 0
#[3,] 0.5728534 0 0
#[4,] 0.9082078 0 0
我需要将它应用于大型矩阵,因此效率是相关的。
<小时/> 编辑: 收到几个很好的建议后,我比较了他们的速度以供将来参考:
set.seed(1)
A <- matrix(runif(n = 1E4*2E3),nrow = 2E3)
threshholds <- runif(n=1E4)
> system.time(A * (A > threshholds[col(A)]))# akrun
user system elapsed
0.394 0.124 0.519
> system.time(replace(A, A <= threshholds[col(A)], 0)) # akrun
user system elapsed
0.465 0.138 0.604
> system.time(pmin(A, A > threshholds[col(A)])) #akrun
user system elapsed
0.678 0.290 1.024
> system.time(A[t(apply(A, 1, `<`, threshholds))] <- 0) #Andrew Gustar
user system elapsed
0.875 0.306 1.200
> system.time(At <- apply(A, 1, applythresh)) + system.time(t(At)) #Chris Litter
user system elapsed
0.891 0.372 1.286
> system.time(sweep(A, 2, threshholds, function(a,b) {ifelse(a<b,0,a)})) #MrFlick
user system elapsed
1.752 0.598 2.354
答案 0 :(得分:6)
这是一个矢量化选项
replace(A, A <= threshholds[col(A)], 0)
或者使用一些算术
A * (A > threshholds[col(A)])
# [,1] [,2] [,3]
#[1,] 0.0000000 0 0.629114
#[2,] 0.3721239 0 0.000000
#[3,] 0.5728534 0 0.000000
#[4,] 0.9082078 0 0.000000
或pmin
pmin(A, A > threshholds[col(A)])
# [,1] [,2] [,3]
#[1,] 0.0000000 0 0.629114
#[2,] 0.3721239 0 0.000000
#[3,] 0.5728534 0 0.000000
#[4,] 0.9082078 0 0.000000
答案 1 :(得分:1)
您可以使用sweep
命令。例如
threshholds <- c(0.3,1,0.5)
sweep(A, 2, threshholds, function(a,b) {ifelse(a<b,0,a)})
# [,1] [,2] [,3]
# [1,] 0.0000000 0 0.629114
# [2,] 0.3721239 0 0.000000
# [3,] 0.5728534 0 0.000000
# [4,] 0.9082078 0 0.000000
这里我们将函数应用于每个不同的列,每个列使用不同的阈值。
答案 2 :(得分:1)
让我知道这是如何在你的完整矩阵上展开的。虽然看到有人有内置功能解决方案,但我可能太慢了。
applythresh <- function(x){
x <- x * (x >= threshholds)
}
At <- apply(A, 1, applythresh)
t(At)
答案 3 :(得分:1)
这是另一种方法......
A[t(apply(A, 1, `<`, threshholds))] <- 0
A
[,1] [,2] [,3]
[1,] 0.0000000 0 0.629114
[2,] 0.3721239 0 0.000000
[3,] 0.5728534 0 0.000000
[4,] 0.9082078 0 0.000000