我在python中使用scipy库来执行多重分发 并驾驶图表。 并转换为png文件。 但问题是我没有得到特定分布的最佳拟合方程。 你可以帮我解决方程并将其显示在图表中。
import io
import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams['figure.figsize'] = (16.0, 14.0)
matplotlib.style.use('ggplot')
mean = 0.47
std = 0.24
DISTRIBUTIONS = [
stats.norm(loc=mean, scale=std),
stats.powerlaw(a=1.66, loc=mean, scale=std),
stats.t(df=2.74, loc=mean, scale=std),
]
bins = 32
size = 16384
plotData = []
for distribution in DISTRIBUTIONS:
try:
# Create random data
rv = pd.Series(distribution.rvs(size=size))
# Get sane start and end points of distribution
start = distribution.ppf(0.01)
end = distribution.ppf(0.99)
# Build PDF and turn into pandas Series
x = np.linspace(start, end, size)
y = distribution.pdf(x)
pdf = pd.Series(y, x)
# Get histogram of random data
b = np.linspace(start, end, bins+1)
y, x = np.histogram(rv, bins=b, normed=True)
x = [(a+x[i+1])/2.0 for i,a in enumerate(x[0:-1])]
hist = pd.Series(y, x)
# Create distribution name and parameter string
title = '{}({})'.format(distribution.dist.name, ', '.join(['{}={:0.2f}'.format(k,v) for k,v in distribution.kwds.items()]))
# Store data for later
plotData.append({
'pdf': pdf,
'hist': hist,
'title': title
})
except Exception:
print('could not create data', distribution.dist.name)
plotMax = len(plotData)
for i, data in enumerate(plotData):
w = abs(abs(data['hist'].index[0]) - abs(data['hist'].index[1]))
# Display
plt.figure(figsize=(10, 6))
ax = data['pdf'].plot(kind='line', label='Model PDF', legend=True, lw=2)
ax.bar(data['hist'].index, data['hist'].values, label='Random Sample', width=w, align='center', alpha=0.5)
ax.set_title(data['title'])
# Grab figure
fig = matplotlib.pyplot.gcf()
# Output 'file'
fig.savefig(data['title']+'.png', format='png', bbox_inches='tight')
# fig.savefig('~/Desktop/dist/' + data['title'] + '.png', format='png', bbox_inches='tight')
matplotlib.pyplot.close()