我有一个csv文件,其数据如下:
For task id 123,
23: 3 times
four: 1 times
twothree: 2 times
xyx: 2 times
lor: 1 time
我想根据任务ID生成具有属性和频率的字典(甚至只是打印)。
预期产出:
import csv
from collections import Counter
from itertools import imap
from operator import itemgetter
with open('task.csv') as f:
data = csv.reader(f)
for row in data:
if row[0] == '123':
cn = Counter(imap(itemgetter(2), row))
for t in cn.iteritems():
print("{} appears {} times".format(*t))
我尝试了以下内容:
Counter(imap(itemgetter(2), row))
但它没有用。在
row
而不是data
和条件,我提供{{1}}并且它正确地显示了特定列的项目频率。但我希望它基于一个条件。如何才能做到这一点?
答案 0 :(得分:1)
您可以使用collections.defaultdict
创建嵌套字典:
from io import StringIO
import csv
from collections import defaultdict
mystr = StringIO("""TaskId,Attr. 1,Attr. 2,Attr. 3
123,23,twothree,xyx
123,23,four,lor
456,23,four,pop
123,23,twothree,xyx
352,34,some,lkj""")
d = defaultdict(lambda: defaultdict(int))
# replace mystr with open('file.csv', 'r')
with mystr as fin:
for item in csv.DictReader(fin):
d[int(item['TaskId'])][int(item['Attr. 1'])] += 1
d[int(item['TaskId'])][item['Attr. 2']] += 1
d[int(item['TaskId'])][item['Attr. 3']] += 1
print(d)
defaultdict({123: defaultdict(int, {23: 3, 'twothree': 2, 'xyx': 2,
'four': 1, 'lor': 1}),
352: defaultdict(int, {34: 1, 'some': 1, 'lkj': 1}),
456: defaultdict(int, {23: 1, 'four': 1, 'pop': 1})})
然后像普通词典一样迭代:
for k, v in d.items():
print('TaskId: {0}'.format(k))
for a, b in v.items():
print('{0}: {1} times'.format(a, b))
结果:
TaskId: 123
23: 3 times
twothree: 2 times
xyx: 2 times
four: 1 times
lor: 1 times
TaskId: 456
23: 1 times
four: 1 times
pop: 1 times
TaskId: 352
34: 1 times
some: 1 times
lkj: 1 times
答案 1 :(得分:0)
如果您不想使用Pandas,可以使用字典轻松完成:
import csv
from tabulate import tabulate
uniquekeys = {}
with open('data') as f:
data = csv.reader(f)
next(data, None) # skip the headers
for row in data:
key = str(row[0]+":"+row[1])
uniquekeys[key] = uniquekeys.get(key, 0) + 1
print(uniquekeys)
或者,这可以在没有python的情况下轻松完成:
cat data |awk -F',' 'NR > 1{print $1":"$2}'|sort|uniq -c
答案 2 :(得分:0)
使用pandas可能更快:
import pandas as pd
df = pd.read_csv('task.csv') # open the file
df['count'] = 0 # add an extra column to count group value occurrences
counts = df.groupby(by = ['TaskId','Attr. 1','Attr. 2','Attr. 3'], as_index = False, sort = False).count() # counts non blank values of the group
display(counts) # shows you the output