我正在尝试编写here描述的方法来估算金属制造商的生产函数。我已经在Python和Matlab中完成了这个,但我正在尝试学习Julia。
spain_clean.csv是我正在加载的对数资本(lnk),log labor(lnl),日志输出(lnva)和日志材料(lnm)的数据集。滞后变量在它们之前用“l”表示。
代码位于底部。我收到一个错误:
ERROR: LoadError: MethodError: no method matching parseNLExpr_runtime(::JuMP.Model, ::JuMP.GenericQuadExpr{Float64,JuMP.Variable}, ::Array{ReverseDiffSparse.NodeData,1}, ::Int32, ::Array{Float64,1})
我认为这与使用向量和数组进入非线性目标有关,但我不太了解Julia足以调试它。
using JuMP # Need to say it whenever we use JuMP
using Clp, Ipopt # Loading the GLPK module for using its solver
using CSV # csv reader
# read data
df = CSV.read("spain_clean.csv")
#MODEL CONSTRUCTION
#--------------------
acf = Model(solver=IpoptSolver())
@variable(acf, -10<= b0 <= 10) #
@variable(acf, -5 <= bk <= 5 ) #
@variable(acf, -5 <= bl <= 5 ) #
@variable(acf, -10<= g1 <= 10) #
const g = sum(df[:phihat]-b0-bk* df[:lnk]-bl* df[:lnl]-g1* (df[:lphihat]-b0-bk* df[:llnk]-bl* df[:llnl]))
const gllnk = sum((df[:phihat]-b0-bk* df[:lnk]-bl* df[:lnl]-g1* (df[:lphihat]-b0-bk* df[:llnk]-bl* df[:llnl])).*df[:llnk])
const gllnl = sum((df[:phihat]-b0-bk* df[:lnk]-bl* df[:lnl]-g1* (df[:lphihat]-b0-bk* df[:llnk]-bl* df[:llnl])).*df[:llnl])
const glphihat = sum((df[:phihat]-b0-bk* df[:lnk]-bl* df[:lnl]-g1* (df[:lphihat]-b0-bk* df[:llnk]-bl* df[:llnl])).*df[:lphihat])
#OBJECTIVE
@NLobjective(acf, Min, g* g + gllnk* gllnk + gllnl* gllnk + glphihat* glphihat)
#SOLVE IT
status = solve(acf) # solves the model
println("Objective value: ", getobjectivevalue(acf)) # getObjectiveValue(model_name) gives the optimum objective value
println("b0 = ", getvalue(b0))
println("bk = ", getvalue(bk))
println("bl = ", getvalue(bl))
println("g1 = ", getvalue(g1))
答案 0 :(得分:0)
朱莉娅没有专家,但我认为你的代码有些问题。 首先,常量不应该在迭代期间改变,并且你正在使它们成为控制变量的函数。其次,你想要使用的是非线性表达式而不是常量。所以你想要写的是常量而不是常量
N = size(df, 1)
@NLexpression(acf, g, sum(df[i, :phihat]-b0-bk* df[i, :lnk]-bl* df[i, :lnl]-g1* (df[i, :lphihat]-b0-bk* df[i, :llnk]-bl* df[i, :llnl]) for i=1:N))
@NLexpression(acf, gllnk, sum((df[i,:phihat]-b0-bk* df[i,:lnk]-bl* df[i,:lnl]-g1* (df[i,:lphihat]-b0-bk* df[i,:llnk]-bl* df[i,:llnl]))*df[i,:llnk] for i=1:N))
@NLexpression(acf,gllnl,sum((df[i,:phihat]-b0-bk* df[i,:lnk]-bl* df[i,:lnl]-g1* (df[i,:lphihat]-b0-bk* df[i,:llnk]-bl* df[i,:llnl]))*df[i,:llnl] for i=1:N))
@NLexpression(acf,glphihat,sum((df[i,:phihat]-b0-bk* df[i,:lnk]-bl* df[i,:lnl]-g1* (df[i,:lphihat]-b0-bk* df[i,:llnk]-bl* df[i,:llnl]))*df[i,:lphihat] for i=1:N))
我对此进行了测试,似乎有效。