我试图通过finetuning预训练的model(vggface)来训练我的模型。我的模型有12个类,1774个训练图像和313个验证图像,每个类有大约150个图像。 我的模型过度拟合所以我添加了dropout和FC层,并进行了批量标准化,看看它是如何进行的。但是,模型仍然适用:
let name;
beforeEach(function() {
browser.get('http://localhost:8080/#/');
//name
ame = element(by.css("*[id='field_nombre']"));
}
以下是时代:
train_data_path = 'dataset_cfps/train'
validation_data_path = 'dataset_cfps/validation'
#Parametres
img_width, img_height = 224, 224
vggface = VGGFace(model='resnet50', include_top=False, input_shape=(img_width, img_height, 3))
last_layer = vggface.get_layer('avg_pool').output
x = Flatten(name='flatten')(last_layer)
xx = Dense(1024, activation = 'softmax')(x)
x2 = Dropout(0.5)(xx)
y = Dense(1024, activation = 'softmax')(x2)
yy = BatchNormalization()(y)
y1 = Dropout(0.5)(yy)
x3 = Dense(12, activation='softmax', name='classifier')(y1)
custom_vgg_model = Model(vggface.input, x3)
# Create the model
model = models.Sequential()
# Add the convolutional base model
model.add(custom_vgg_model)
model.summary()
model = load_model('facenet_resnet_lr3_SGD_relu_1024.h5')
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
# Change the batchsize according to your system RAM
train_batchsize = 32
val_batchsize = 32
train_generator = train_datagen.flow_from_directory(
train_data_path,
target_size=(img_width, img_height),
batch_size=train_batchsize,
class_mode='categorical')
validation_generator = validation_datagen.flow_from_directory(
validation_data_path,
target_size=(img_width, img_height),
batch_size=val_batchsize,
class_mode='categorical',
shuffle=True)
# Compile the model
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.SGD(lr=1e-3),
metrics=['acc'])
# Train the model
history = model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples/train_generator.batch_size ,
epochs=100,
validation_data=validation_generator,
validation_steps=validation_generator.samples/validation_generator.batch_size,
verbose=1)
# Save the model
model.save('facenet_resnet_lr3_SGD_relu_1024_1.h5')
答案 0 :(得分:0)
CNN深度网络需要庞大的数据进行培训。您有一个小数据集,模型无法从这个小数据集中推广。你有两个选择
该模型存在一些问题。您不会将softmax用于隐藏图层 如果您想克服过度拟合的问题,您将冻结训练过的图层并仅训练新添加的图层。如果模型仍然过度使用,您可以删除已添加的某些图层或降低其单位数。