角度测试中未定义var

时间:2018-06-13 10:00:51

标签: javascript html angular testing undefined

我在演示者中制作了一个角色应用,并且不明白为什么会这样。

我有这个测试:

beforeEach(function() {
  
        browser.get('http://localhost:8080/#/');

...

        //name
        let name = element(by.css("*[id='field_nombre']"));
    
       }
       
        it('Scenario 1', function () {
        name.click();
        ....
它说名字没有定义。

我这样做:

 beforeEach(function() {
      
            browser.get('http://localhost:8080/#/');

    ...

        
           }
           
            it('Scenario 1', function () {
             //name
            let name = element(by.css("*[id='field_nombre']"));
            name.click();
            ....

测试工作正常。有没有任何理由为什么它不会在之前认识到某些变量初始化?

4 个答案:

答案 0 :(得分:1)

9:00:00 To 09:30:00

答案 1 :(得分:1)

if __name__ == '__main__': n = int(input()) if n in range(2,11): student_marks = {} for _ in range(n): line = input().split() name = line[0] scores = line[1:] scores = list(map(float, scores)) truth,x,y = 0,0,0 y = len(scores) for x in scores: if 0<=x<=100: truth = truth+1 if(truth == y): student_marks[name] = scores else: print("Marks out of range") query_name = input() add = 0 m=0 for s in student_marks[query_name]: m = m+1 if x in student_marks: if x == query_name : for y in student_marks[query_name]: add = add + y average = float(add/m) else: print("Name doesnt exist.Enter correct name and start again") else: print("The person not ideally linked,since incorrect marks entered,Enter properly and try again") print("%.2f" % average) 有自己独立的功能范围,beforeEach有自己的功能范围。我们无法访问之前从其他函数初始化的变量。

在beforeeach函数之外初始化变量。

it

答案 2 :(得分:1)

let name = element(by.css("*[id='field_nombre']")); 

名称在beforeEach()内定义。因此,名称范围仅在beforeEach()内可用。它无法从方法外部访问

答案 3 :(得分:0)

因为您的 (type) Output Shape Param # ================================================================= model_5 (Model) (None, 12) 26725324 ================================================================= Total params: 26,725,324 Trainable params: 26,670,156 Non-trainable params: 55,168 _________________________________________________________________ Found 1774 images belonging to 12 classes. Found 313 images belonging to 12 classes. . . . Epoch 70/100 56/55 [==============================] - 49s 880ms/step - loss: 0.5433 - acc: 0.8987 - val_loss: 0.8271 - val_acc: 0.7796 Epoch 71/100 56/55 [==============================] - 49s 880ms/step - loss: 0.5353 - acc: 0.9145 - val_loss: 0.7954 - val_acc: 0.7508 Epoch 72/100 56/55 [==============================] - 49s 880ms/step - loss: 0.5353 - acc: 0.8955 - val_loss: 0.8690 - val_acc: 0.7348 Epoch 73/100 56/55 [==============================] - 49s 880ms/step - loss: 0.5310 - acc: 0.9037 - val_loss: 0.8673 - val_acc: 0.7476 Epoch 74/100 56/55 [==============================] - 49s 880ms/step - loss: 0.5189 - acc: 0.8943 - val_loss: 0.8701 - val_acc: 0.7380 Epoch 75/100 56/55 [==============================] - 49s 880ms/step - loss: 0.5333 - acc: 0.8952 - val_loss: 0.9399 - val_acc: 0.7188 Epoch 76/100 56/55 [==============================] - 49s 879ms/step - loss: 0.5106 - acc: 0.9043 - val_loss: 0.8107 - val_acc: 0.7700 Epoch 77/100 56/55 [==============================] - 49s 880ms/step - loss: 0.5108 - acc: 0.9064 - val_loss: 0.9624 - val_acc: 0.6869 Epoch 78/100 56/55 [==============================] - 49s 880ms/step - loss: 0.5214 - acc: 0.8994 - val_loss: 0.9602 - val_acc: 0.6933 Epoch 79/100 56/55 [==============================] - 49s 880ms/step - loss: 0.5246 - acc: 0.9009 - val_loss: 0.8379 - val_acc: 0.7572 Epoch 80/100 56/55 [==============================] - 49s 879ms/step - loss: 0.4859 - acc: 0.9082 - val_loss: 0.7856 - val_acc: 0.7796 Epoch 81/100 56/55 [==============================] - 49s 881ms/step - loss: 0.5005 - acc: 0.9175 - val_loss: 0.7609 - val_acc: 0.7827 Epoch 82/100 56/55 [==============================] - 49s 880ms/step - loss: 0.4690 - acc: 0.9294 - val_loss: 0.7671 - val_acc: 0.7636 Epoch 83/100 56/55 [==============================] - 49s 879ms/step - loss: 0.4897 - acc: 0.9146 - val_loss: 0.7902 - val_acc: 0.7636 Epoch 84/100 56/55 [==============================] - 49s 879ms/step - loss: 0.4604 - acc: 0.9291 - val_loss: 0.7603 - val_acc: 0.7636 Epoch 85/100 56/55 [==============================] - 49s 881ms/step - loss: 0.4750 - acc: 0.9220 - val_loss: 0.7325 - val_acc: 0.7668 Epoch 86/100 56/55 [==============================] - 49s 879ms/step - loss: 0.4524 - acc: 0.9266 - val_loss: 0.7782 - val_acc: 0.7636 Epoch 87/100 56/55 [==============================] - 49s 880ms/step - loss: 0.4643 - acc: 0.9172 - val_loss: 0.9892 - val_acc: 0.6901 Epoch 88/100 56/55 [==============================] - 49s 881ms/step - loss: 0.4718 - acc: 0.9177 - val_loss: 0.8269 - val_acc: 0.7380 Epoch 89/100 56/55 [==============================] - 49s 879ms/step - loss: 0.4646 - acc: 0.9290 - val_loss: 0.7846 - val_acc: 0.7604 Epoch 90/100 56/55 [==============================] - 49s 879ms/step - loss: 0.4433 - acc: 0.9341 - val_loss: 0.7693 - val_acc: 0.7764 Epoch 91/100 56/55 [==============================] - 49s 877ms/step - loss: 0.4706 - acc: 0.9196 - val_loss: 0.8200 - val_acc: 0.7604 Epoch 92/100 56/55 [==============================] - 49s 880ms/step - loss: 0.4572 - acc: 0.9184 - val_loss: 0.9220 - val_acc: 0.7220 Epoch 93/100 56/55 [==============================] - 49s 880ms/step - loss: 0.4479 - acc: 0.9175 - val_loss: 0.8781 - val_acc: 0.7348 Epoch 94/100 56/55 [==============================] - 49s 879ms/step - loss: 0.4793 - acc: 0.9100 - val_loss: 0.8035 - val_acc: 0.7572 Epoch 95/100 56/55 [==============================] - 49s 879ms/step - loss: 0.4329 - acc: 0.9279 - val_loss: 0.7750 - val_acc: 0.7796 Epoch 96/100 56/55 [==============================] - 49s 879ms/step - loss: 0.4361 - acc: 0.9212 - val_loss: 0.8124 - val_acc: 0.7508 Epoch 97/100 56/55 [==============================] - 49s 880ms/step - loss: 0.4371 - acc: 0.9202 - val_loss: 0.9806 - val_acc: 0.7029 Epoch 98/100 56/55 [==============================] - 49s 880ms/step - loss: 0.4298 - acc: 0.9149 - val_loss: 0.8637 - val_acc: 0.7380 Epoch 99/100 56/55 [==============================] - 49s 880ms/step - loss: 0.4370 - acc: 0.9255 - val_loss: 0.8349 - val_acc: 0.7604 Epoch 100/100 56/55 [==============================] - 49s 880ms/step - loss: 0.4407 - acc: 0.9205 - val_loss: 0.8477 - val_acc: 0.7508 与其使用的范围不同。

在JS let name =中,关键字将范围从功能范围缩小到块范围:

let