## Define the moment generating function of Weibull distribution
scale <- 1/2
shape <- 1
lambda <- 2
beta <- 0.1
## I have specified nmax=160 since I cant perform the sum until infinity
mgfw <- function(x){
nmax <- 160
scale <- scale
shape <- shape
suma <- 0
for(n in 0:nmax){
suma <- suma + ((x^n) * ((scale)^n)) * gamma(1 + (n/shape)) / factorial(n)
}
return(suma)
}
curve(mgfw, from=0.1, 0.25, ylim=c(1, 1.2))
mu <- (scale) * gamma(1 + (1 / shape))
fun2 <- function(x) 1 + x * (1 + beta) * mu
x <- seq(0, 10, length.out=100)
y <- fun2(x)
curve(fun2, from=0, 10, add=TRUE)
grid()
求解前面的等式我得到了下一个结果:
library(rootSolve)
r <- uniroot.all(function(x) mgfw(x) - fun2(x), c(0.1, 0.185))
r
abline(v=r)
我有一个这样的情节
两条线的交点由垂直线给出。但我想得到一个情节,其中交汇点可以在情节中清晰。如何调整情节?或者在不同规模的区域看到?