我有一个数百万行的数据帧,没有重复的时间ID标记:
ID | Time | Activity
a | 1 | Bar
a | 3 | Bathroom
a | 2 | Bar
a | 4 | Bathroom
a | 5 | Outside
a | 6 | Bar
a | 7 | Bar
将它转换为此格式的最有效方法是什么?
ID | StartTime | EndTime | Location
a | 1 | 2 | Bar
a | 3 | 4 | Bathroom
a | 5 | N/A | Outside
a | 6 | 7 | Bar
我必须使用大量数据执行此操作,因此想知道如何尽可能加快此过程。
答案 0 :(得分:1)
我正在使用groupby
df.groupby(['ID','Activity']).Time.apply(list).apply(pd.Series).rename(columns={0:'starttime',1:'endtime'}).reset_index()
Out[251]:
ID Activity starttime endtime
0 a Bar 1.0 2.0
1 a Bathroom 3.0 4.0
2 a Outside 5.0 NaN
或使用pivot_table
df.assign(I=df.groupby(['ID','Activity']).cumcount()).pivot_table(index=['ID','Activity'],columns='I',values='Time')
Out[258]:
I 0 1
ID Activity
a Bar 1.0 2.0
Bathroom 3.0 4.0
Outside 5.0 NaN
更新
df.assign(I=df.groupby(['ID','Activity']).cumcount()//2).groupby(['ID','Activity','I']).Time.apply(list).apply(pd.Series).rename(columns={0:'starttime',1:'endtime'}).reset_index()
Out[282]:
ID Activity I starttime endtime
0 a Bar 0 1.0 2.0
1 a Bar 1 6.0 7.0
2 a Bathroom 0 3.0 4.0
3 a Outside 0 5.0 NaN