我正在从事自然语言处理,需要预处理一些数据。我的数据在文本文件中,我必须读取数据并将所有名称更改为男性或女性。
在阅读数据并对其进行标记后,我应用了pos标记并检查了一个包含名称列表的文件,并将名称更改为' Male'或者'女性
例如:
[' Jack','',' Jill',' Went',' up',& #39;',' hill']
应改为
['男','','女',' Went'' up',& #39;',' hill']
基于以下POS
[(' Jack',' NNP'), ('和',' CC'), (' Jill',' NNP'), (' Went',' NNP'), (' up',' IN'), ('',' DT'), (' hill',' NN')]
我的代码如下:
import nltk
text = open('collegegirl.txt').read()
with open('male_names.txt') as f1:
male = nltk.word_tokenize(f1.read())
with open('female_names.txt') as f2:
female = nltk.word_tokenize(f2.read())
data = nltk.pos_tag(nltk.word_tokenize(text))
for word, pos in data:
if(pos == 'NNP'):
if word in male:
word = 'Male'
if word in female:
word = 'Female'
上面的代码只是检查单词而不是写任何东西。如何编辑数据中的名称。我是python的新手。提前谢谢。
答案 0 :(得分:1)
拆分文本并在for
循环中执行:
for i, (word, pos) in enumerate(data):
if(pos == 'NNP'):
if word in male:
data[i] = ('Male', pos)
if word in female:
data[i] = ('Female', pos)
array = [text for (text, pos) in data]
更多的python方式:
array = [x if (not pos == "NNP" and not x in male and not x in female) else ("Female" if (x in female) else ( "Male" if (x in male) else x)) for (x, pos) in data]
答案 1 :(得分:1)
我个人认为,最好将Spacy用于POS标记,这是更快,更准确的方法。另外,您可以使用其命名实体识别来检查单词是否为PERSON。安装spacy并从此处https://spacy.io/usage/下载en_core_web_lg
模型
您的问题可以通过以下方式解决:
import spacy
from functools import reduce
nlp_spacy = spacy.load('en_core_web_lg')
NAMELIST = {'Christiano Ronaldo':'Male', 'Neymar':'Male', 'Messi':'Male', "Sandra":'Female'}
with open("input.txt") as f:
text = f.read()
doc = nlp_spacy(text)
names_in_text = [(entity.text, NAMELIST[entity.text]) for entity in doc.ents if entity.label_ in ['PERSON'] and entity.text in NAMELIST]
print(names_in_text) #------- prints [('Christiano Ronaldo', 'Male'), ('Messi', 'Male')]
replaced_text = reduce(lambda x, kv: x.replace(*kv), names_in_text, text)
print(replaced_text) #------- prints Male scored three. Male scored one. Female is an athlete. I am from US.