我有以下代码从Marketo系统中获取一些数据
from marketorestpython.client import MarketoClient
munchkin_id = "xxx-xxx-xxx"
client_id = "00000000-0000-0000-0000-00000000000"
client_secret= "secret"
mc = MarketoClient(munchkin_id, client_id, client_secret)
mc.execute(method='get_multiple_leads_by_filter_type', filterType='email', filterValues=['email@domain.com'],
fields=['BG__c','email','company','createdAt'], batchSize=None)
这会返回以下数据
[{'BG__c': 'ABC',
'company': 'MCS',
'createdAt': '2016-10-25T14:04:15Z',
'id': 4,
'email': 'email@domain.com'},
{'BG__c': 'CDE',
'company': 'MSC',
'createdAt': '2018-03-28T16:41:06Z',
'id': 10850879,
'email': 'email@domain.com'}]
我想要做的是,保存这个返回到Parquet文件。但是,当我使用以下代码尝试此操作时,我收到一条错误消息。
from marketorestpython.client import MarketoClient
munchkin_id = "xxx-xxx-xxx"
client_id = "00000000-0000-0000-0000-00000000000"
client_secret= "secret"
mc = MarketoClient(munchkin_id, client_id, client_secret)
data = mc.execute(method='get_multiple_leads_by_filter_type', filterType='email', filterValues=['email@domain.com'],
fields=['BG__c','email','company','createdAt'], batchSize=None)
sqlContext.read.json(data)
data.write.parquet("adl://subscription.azuredatalakestore.net/folder1/Marketo/marketo_data")
java.lang.ClassCastException: java.util.HashMap cannot be cast to java.lang.String
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<command-1431708582476650> in <module>()
7 fields=['BG__c','email','company','createdAt'], batchSize=None)
8
----> 9 sqlContext.read.json(data)
10 data.write.parquet("adl://subscription.azuredatalakestore.net/folder1/Marketo/marketo_data")
/databricks/spark/python/pyspark/sql/readwriter.py in json(self, path, schema, primitivesAsString, prefersDecimal, allowComments, allowUnquotedFieldNames, allowSingleQuotes, allowNumericLeadingZero, allowBackslashEscapingAnyCharacter, mode, columnNameOfCorruptRecord, dateFormat, timestampFormat, multiLine, allowUnquotedControlChars, charset)
261 path = [path]
262 if type(path) == list:
--> 263 return self._df(self._jreader.json(self._spark._sc._jvm.PythonUtils.toSeq(path)))
264 elif isinstance(path, RDD):
265 def func(iterator):
/databricks/spark/python/lib/py4j-0.10.6-src.zip/py4j/java_gateway.py in __call__(self, *args)
1158 answer = self.gateway_client.send_command(command)
1159 return_value = get_return_value(
-> 1160 answer, self.gateway_client, self.target_id, self.name)
1161
我做错了什么?
答案 0 :(得分:1)
您有以下数据
setTimeout(() => {
channel.postMessage('1000');
}, 100)
为了将其保存到镶木地板文件中,我建议创建一个DataFrame,然后将其保存为镶木地板。
data = [{'BG__c': 'ABC',
'company': 'MCS',
'createdAt': '2016-10-25T14:04:15Z',
'id': 4,
'email': 'email@domain.com'},
{'BG__c': 'CDE',
'company': 'MSC',
'createdAt': '2018-03-28T16:41:06Z',
'id': 10850879,
'email': 'email@domain.com'}]
这将提供以下类型:
from pyspark.sql.types import *
df = spark.createDataFrame(data,
schema = StructType([
StructField("BC_g", StringType(), True),
StructField("company", StringType(), True),
StructField("createdAt", StringType(), True),
StructField("email", StringType(), True),
StructField("id", IntegerType(), True)]))
然后,您可以将数据框保存为镶木地板文件
df.dtypes
[('BC_g', 'string'),
('company', 'string'),
('createdAt', 'string'),
('email', 'string'),
('id', 'int')]
其中parquet_path_in_hdfs是所需拼花文件的路径和名称
答案 1 :(得分:0)
根据您的代码中的以下语句,您直接编写数据。您必须先创建数据帧。你可以使用val df = sqlContext.read.json(“path / to / json / file”)将json转换为df。然后执行df.write
data.write.parquet("adl://subscription.azuredatalakestore.net/folder1/Marketo/marketo_data")