我有这个人。 pandas dataframe:
2018-05-25 0.000381 0.264318 land 2018-05-25
2018-05-26 0.000000 0.264447 land 2018-05-26
2018-05-27 0.000000 0.264791 NaN NaT
2018-05-28 0.000000 0.265253 NaN NaT
2018-05-29 0.000000 0.265720 NaN NaT
2018-05-30 0.000000 0.266066 land 2018-05-30
2018-05-31 0.000000 0.266150 NaN NaT
2018-06-01 0.000000 0.265816 NaN NaT
2018-06-02 0.000000 0.264892 land 2018-06-02
2018-06-03 0.000000 0.263191 NaN NaT
2018-06-04 0.000000 0.260508 land 2018-06-04
2018-06-05 0.000000 0.256619 NaN NaT
2018-06-06 0.000000 0.251286 NaN NaT
2018-06-07 0.000000 0.244250 NaN NaT
2018-06-08 0.000000 0.235231 NaN NaT
2018-06-09 0.000000 0.223932 land 2018-06-09
当第4列中有3个或更多连续的NaN值时,我想用NaN替换第3列中的值。输出应如下所示:
2018-05-25 0.000381 0.264318 land 2018-05-25
2018-05-26 0.000000 0.264447 land 2018-05-26
2018-05-27 0.000000 0.264791 NaN NaT
2018-05-28 0.000000 0.265253 NaN NaT
2018-05-29 0.000000 NaN NaN NaT
2018-05-30 0.000000 0.266066 land 2018-05-30
2018-05-31 0.000000 0.266150 NaN NaT
2018-06-01 0.000000 0.265816 NaN NaT
2018-06-02 0.000000 0.264892 land 2018-06-02
2018-06-03 0.000000 0.263191 NaN NaT
2018-06-04 0.000000 0.260508 land 2018-06-04
2018-06-05 0.000000 0.256619 NaN NaT
2018-06-06 0.000000 0.251286 NaN NaT
2018-06-07 0.000000 NaN NaN NaT
2018-06-08 0.000000 NaN NaN NaT
2018-06-09 0.000000 0.223932 land 2018-06-09
我也很好,如果不是用NaN替换,那么行就完全删除了
答案 0 :(得分:3)
这是一种方法,其中null的连续出现是n,即
n = 3
# create a mask
x = df[3].isnull()
# counter to restart the count of nan once there is a no nan consecutively
se = (x.cumsum() - x.cumsum().where(~x).fillna(method='pad').fillna(0))
df.loc[se>=n,2] = np.nan
0 1 2 3 4
0 2018-05-25 0.000381 0.264318 land 2018-05-25
1 2018-05-26 0.000000 0.264447 land 2018-05-26
2 2018-05-27 0.000000 0.264791 NaN NaT
3 2018-05-28 0.000000 0.265253 NaN NaT
4 2018-05-29 0.000000 NaN NaN NaT
5 2018-05-30 0.000000 0.266066 land 2018-05-30
6 2018-05-31 0.000000 0.266150 NaN NaT
7 2018-06-01 0.000000 0.265816 NaN NaT
8 2018-06-02 0.000000 0.264892 land 2018-06-02
9 2018-06-03 0.000000 0.263191 NaN NaT
10 2018-06-04 0.000000 0.260508 land 2018-06-04
11 2018-06-05 0.000000 0.256619 NaN NaT
12 2018-06-06 0.000000 0.251286 NaN NaT
13 2018-06-07 0.000000 NaN NaN NaT
14 2018-06-08 0.000000 NaN NaN NaT
15 2018-06-09 0.000000 0.223932 land 2018-06-09
答案 1 :(得分:2)
修改,针对连续NaN
的任何阈值提供更多功能的方法:
threshold = 3
mask = df.d.notna()
df.loc[(~mask).groupby(mask.cumsum()).transform('cumsum') >= threshold, 'c'] = np.nan
您可以简单地检查行以及将行移动两次都为空(我将列命名为a-e
:
df.loc[df.d.isnull() & df.d.shift().isnull() & df.d.shift(2).isnull(), 'c'] = np.nan
# Result:
a b c d e
0 2018-05-25 0.000381 0.264318 land 2018-05-25
1 2018-05-26 0.000000 0.264447 land 2018-05-26
2 2018-05-27 0.000000 0.264791 NaN NaT
3 2018-05-28 0.000000 0.265253 NaN NaT
4 2018-05-29 0.000000 NaN NaN NaT
5 2018-05-30 0.000000 0.266066 land 2018-05-30
6 2018-05-31 0.000000 0.266150 NaN NaT
7 2018-06-01 0.000000 0.265816 NaN NaT
8 2018-06-02 0.000000 0.264892 land 2018-06-02
9 2018-06-03 0.000000 0.263191 NaN NaT
10 2018-06-04 0.000000 0.260508 land 2018-06-04
11 2018-06-05 0.000000 0.256619 NaN NaT
12 2018-06-06 0.000000 0.251286 NaN NaT
13 2018-06-07 0.000000 NaN NaN NaT
14 2018-06-08 0.000000 NaN NaN NaT
15 2018-06-09 0.000000 0.223932 land 2018-06-09