我有一个名为价格的数据框包含两列:时间戳和收盘价。内容如下:
Timestamp Close
1/1/2017 0:00 966.6
1/1/2017 1:00 963.87
1/1/2017 2:00 963.97
1/1/2017 3:00 962.83
我有另一个名为 output 的数据框,其内容如下:
created_at count
6/7/2018 19:00 1
6/7/2018 20:00 2
6/7/2018 21:00 3
6/7/2018 22:00 2
6/7/2018 23:00 1
我想要做的是将价格数据框的收盘价附加到上面的输出数据框,以获得一个如下所示的数据框:
created_at count close
1/1/2017 0:00 5 966.6
1/1/2017 1:00 1 963.87
1/1/2017 2:00 1 963.97
1/1/2017 3:00 1 962.83
我知道我可以合并2个数据帧,然后使用
删除Timestamp列output.drop['Timestamp'], axis=1)
我可以使用\
删除NaN值output.dropna()
但我不能将2个文件合并到不同的列上。我怎样才能做到这一点?更新后的代码如下:
import pandas as pd
path1 = r'C:\Users\Ahmed Ismail Khalid\Desktop\Bullcrap Testing Delete Later\Bitcoin Prices Hourly Based.csv'
path2 = r'C:\Users\Ahmed Ismail Khalid\Desktop\Bullcrap Testing Delete Later\adam3us.csv'
path3 = r'C:\Users\Ahmed Ismail Khalid\Desktop\Bullcrap Testing Delete Later\ascending and final.csv'
df1 = pd.read_csv(path1)
df2 = pd.read_csv(path2)
df3 = pd.read_csv(path3)
output = pd.merge(df1, df2, how="inner", on="created_at") #column_name should be common in both dataframe. how represents type of intersection. In your case it will be inner(INNER JOIN)
df4 = output.created_at.value_counts().rename_axis('created_at').reset_index(name='adam3us_tweets')
df4 = df4.sort_values(by=['created_at'])
# output the dataframe df4
print(df4,'\n\n')
df4.to_csv('results.csv', encoding='utf-8',index=False)
任何和所有帮助将不胜感激。
由于