我在下面有一张表格,我想在一个分组的条形图中绘制。我希望x轴为time_period
,y轴为death_licenses
,我希望按civic_centre
进行分类。如您所见,对于每个不同的time_period
,civic_centre
中有四个分类选项。
+-------------+--------------+----------------+
| time_period | civic_centre | death_licenses |
+-------------+--------------+----------------+
| 2011-01-01 | ET | 410 |
| 2011-01-01 | NY | 681 |
| 2011-01-01 | SC | 674 |
| 2011-01-01 | TO | 297 |
| 2011-02-01 | ET | 307 |
| 2011-02-01 | NY | 388 |
| 2011-02-01 | SC | 407 |
| 2011-02-01 | TO | 223 |
| 2011-03-01 | ET | 349 |
| 2011-03-01 | NY | 655 |
| 2011-03-01 | SC | 400 |
| 2011-03-01 | TO | 185 |
| 2011-04-01 | ET | 373 |
| 2011-04-01 | NY | 640 |
| 2011-04-01 | SC | 457 |
| 2011-04-01 | TO | 42 |
+-------------+--------------+----------------+
这是我到目前为止所做的工作:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class Utility:
@staticmethod
def read_csv(csv, number_columns=[], categorical_columns=[], date_columns=[], drop_columns_if_empty=[], drop_duplicate_columns=[]):
df = pd.read_csv(csv, na_values=['--', ''])
df.rename(columns=lambda x: x.strip().replace('"', '').replace(' ', '_').replace('__', '_').lower(),
inplace=True)
df[number_columns] = df[number_columns].astype(str).replace({'[\$,)]': '', ' ': '', '[(]': '-'}, regex=True)
for col in number_columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
for col in date_columns:
df[col] = pd.to_datetime(df[col], errors='coerce')
df.dropna(subset=drop_columns_if_empty, how='any', inplace=True)
df = df.applymap(lambda x: x.strip() if type(x) is str else x)
if (len(drop_duplicate_columns) > 1):
df = df.drop_duplicates(drop_duplicate_columns, keep='last')
for col in categorical_columns:
df[col] = pd.Categorical(df[col])
return df
df = Utility.read_csv('http://opendata.toronto.ca/clerk/registry.service/death.csv', number_columns=['death_licenses'], categorical_columns=['place_of_death', 'civic_centre'], date_columns=['time_period'])
df.sort_values(['time_period', 'civic_centre'], ascending=[True, False])
df2 = df.groupby(['time_period', 'civic_centre'])['death_licenses'].agg('sum').reset_index()
答案 0 :(得分:3)
这里有几个绘图选项(如果我理解正确的话),我更喜欢第一个自己。
% matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series, DataFrame
civics = ([i for i in ['ET', 'NY', 'SC', 'TO']] * 4)
civics.sort()
data = DataFrame({
'time_period': Series([pd.to_datetime('2011-0{}-01'.format(i)) for i in
range(1, 5)] * 4),
'civic_centre': Series(civics),
'death_licenses': Series(np.random.randint(400, 500, 16))
})
# As four series.
pd.pivot_table(data, index = 'time_period', columns = 'civic_centre', values
= 'death_licenses').plot();
# As a grouped bar plot.
pd.pivot_table(data, index = 'civic_centre', columns = 'time_period', values
= 'death_licenses').plot(kind = 'bar')
给出这两个图: