如何在C#中改进推送数据管道以匹配性能

时间:2018-06-09 17:08:31

标签: c# performance linq f#

对我来说,重新安装宠物项目是在F#中实现基于推送的数据管道。推送管道比LINQ等拉管道更简单,更快(尽管它们没有拉管道的所有功能)。

让我感到遗憾的是,我似乎没有在C#中实现推送管道,这是我在F#中推送管道的有效方法。我正在寻找有关如何让我的C#实现更接近F#的输入。

F#中的简单推送管道可以表示如下:

type Receiver<'T> = 'T            -> unit
type Stream<'T>   = Receiver<'T>  -> unit

在C#中我们可以这样写:

public delegate void Receiver<in T>(T v);
public delegate void Stream<out T>(Receiver<T> r);

这里的想法是Stream<>是一个函数,它给一个值的接收者调用接收者,其中包含流中的所有值。

这允许我们在F#中定义map又名'选择':

let inline map (m : 'T -> 'U) (s : Stream<'T>) : Stream<'U> =
  fun r -> s (fun v -> r (m v))

C#:

public static Stream<U> Map<T, U>(this Stream<T> t, Func<T, U> m) =>
  r => t(v => r(m(v)));

我们可以实现其他功能,直到我们可以定义一个测试开销的数据管道。

let trivialTest n =
  TrivialStream.range       0 1 n
  |> TrivialStream.map      int64
  |> TrivialStream.filter   (fun v -> v &&& 1L = 0L)
  |> TrivialStream.map      ((+) 1L)
  |> TrivialStream.sum

let trivialTestCs n =
  Stream
    .Range(0,1,n)
    .Map(fun v -> int64 v)
    .Filter(fun v -> v &&& 1L = 0L)
    .Map(fun v -> v + 1L)
    .Sum()

在这个管道中,每个操作都非常便宜,因此当我们测量时,底层实现的任何开销都会显示出来。

当比较4个不同的数据管道时,命令性(不是真正的管道,但有理由检查实现),trivialpush,trivialpush(C#)和linq这些是.NET 4.7.1 / x64上的数字:

Running imperative with total=100000000, outer=1000000, inner=100 ...
  ... 87 ms, cc0=0, cc1=0, cc2=0, result=2601L
Running trivialpush with total=100000000, outer=1000000, inner=100 ...
  ... 414 ms, cc0=53, cc1=0, cc2=0, result=2601L
Running trivialpush(C#) with total=100000000, outer=1000000, inner=100 ...
  ... 1184 ms, cc0=322, cc1=0, cc2=0, result=2601L
Running linq with total=100000000, outer=1000000, inner=100 ...
  ... 2080 ms, cc0=157, cc1=0, cc2=0, result=2601L

命令式解决方案是更快,LINQ开始拉数据管道是最慢的。这是预期的。

尽管具有非常相似的实现并以类似的方式使用,但F#push管道的开销似乎比C#管道少3倍。

如何更改C#数据管道以匹配或取代F#数据管道?我希望数据管道的API大致相同。

更新2018-06-18

@scrwtp询问如果我在F#中删除inline会发生什么。现在我添加了inline以使sum按预期工作(在F#中inline允许更高级的泛型)

Running imperative with total=100000000, outer=1000000, inner=100 ...
  ... 85 ms, cc0=0, cc1=0, cc2=0, result=2601L
Running trivialpush with total=100000000, outer=1000000, inner=100 ...
  ... 773 ms, cc0=106, cc1=0, cc2=0, result=2601L
Running trivialpush(C#) with total=100000000, outer=1000000, inner=100 ...
  ... 1181 ms, cc0=322, cc1=0, cc2=0, result=2601L
Running linq with total=100000000, outer=1000000, inner=100 ...
  ... 2124 ms, cc0=157, cc1=0, cc2=0, result=2601L

这显着减慢了F#版本,但它仍然比我的C#流库好50%。

有趣的是,inline对性能产生了如此深远的影响,因为内联的唯一内容就是构建回调管道。构建完成后,回调管道应该看起来完全一样。

更新2018-06-24

我决定详细研究F#和C#数据管道之间的区别。

以下是Filter(fun v -> v &&& 1L = 0L)的jitted代码如何查找F#:

; TrivialPush, F#, filter operation
00007ffc`b7d01160 488bc2          mov     rax,rdx
; F# inlines the filter function: (fun v -> v &&& 1 = 0L)
; Is even?
00007ffc`b7d01163 a801            test    al,1
00007ffc`b7d01165 7512            jne     00007ffc`b7d01179
; Yes, call next chain in pipeline
; Load pointer next step in pipeline
00007ffc`b7d01167 488b4908        mov     rcx,qword ptr [rcx+8]
; Load Object Method Table
00007ffc`b7d0116b 488b01          mov     rax,qword ptr [rcx]
; Load Table of methods
00007ffc`b7d0116e 488b4040        mov     rax,qword ptr [rax+40h]
; Load address of Invoke
00007ffc`b7d01172 488b4020        mov     rax,qword ptr [rax+20h]
; Jump to Invoke (tail call)
00007ffc`b7d01176 48ffe0          jmp     rax
; No, the number was odd, bail out
00007ffc`b7d01179 33c0            xor     eax,eax
00007ffc`b7d0117b c3              ret

关于这段代码唯一真正的大抱怨是抖动未能内联尾部调用,我们最终得到了一个虚拟尾调用。

让我们看一下C#中的相同数据管道

; TrivialPush, C#, filter operation
; Method prelude
00007ffc`b75c1a10 57              push    rdi
00007ffc`b75c1a11 56              push    rsi
; Allocate space on stack
00007ffc`b75c1a12 4883ec28        sub     rsp,28h
00007ffc`b75c1a16 488bf1          mov     rsi,rcx
00007ffc`b75c1a19 488bfa          mov     rdi,rdx
; Load pointer test delegate (fun v -> v &&& 1 = 0L)
00007ffc`b75c1a1c 488b4e10        mov     rcx,qword ptr [rsi+10h]
; Load Method Table
00007ffc`b75c1a20 488b4110        mov     rax,qword ptr [rcx+10h]
; Setup this pointer for delegate
00007ffc`b75c1a24 488d4808        lea     rcx,[rax+8]
00007ffc`b75c1a28 488b09          mov     rcx,qword ptr [rcx]
00007ffc`b75c1a2b 488bd7          mov     rdx,rdi
; Load address to Invoke and call
00007ffc`b75c1a2e ff5018          call    qword ptr [rax+18h]
; Did filter return true?
00007ffc`b75c1a31 84c0            test    al,al
00007ffc`b75c1a33 7411            je      00007ffc`b75c1a46
; Yes, call next step in data pipeline
; Load Method Table
00007ffc`b75c1a35 488b4608        mov     rax,qword ptr [rsi+8]
00007ffc`b75c1a39 488d4808        lea     rcx,[rax+8]
; Setup this pointer for delegate
00007ffc`b75c1a3d 488b09          mov     rcx,qword ptr [rcx]
00007ffc`b75c1a40 488bd7          mov     rdx,rdi
; Load address to Invoke and call
00007ffc`b75c1a43 ff5018          call    qword ptr [rax+18h]
; Method prelude epilogue
00007ffc`b75c1a46 90              nop
00007ffc`b75c1a47 4883c428        add     rsp,28h
00007ffc`b75c1a4b 5e              pop     rsi
00007ffc`b75c1a4c 5f              pop     rdi
00007ffc`b75c1a4d c3              ret
; (fun v -> v &&& 1 = 0L) redirect
00007ffc`b75c0408 e963160000      jmp     00007ffc`b75c1a70
; (fun v -> v &&& 1 = 0L)
00007ffc`b75c1a70 488bc2          mov     rax,rdx
; Is even?
00007ffc`b75c1a73 a801            test    al,1
00007ffc`b75c1a75 0f94c0          sete    al
; return result
00007ffc`b75c1a78 0fb6c0          movzx   eax,al
; We are done!
00007ffc`b75c1a7b c3              ret

比较F#数据管道,很容易看出上面的代码更贵:

  1. F#内联了测试功能,从而避免了虚拟呼叫(但是为什么抖动不能虚拟化这个呼叫并为我们内联呢?)
  2. F#使用尾调用,在这种情况下最终效率更高,因为我们只是进行虚拟跳转,而不是虚拟调用到下一步
  3. 在F#jitted代码中摆弄的前奏/尾声较少,可能是因为尾部调用?
  4. C#jitted代码的管道中的步骤之间存在重定向跳转。
  5. C#代码使用委托而不是抽象类。委托调用似乎比抽象类调用稍微有效。
  6. 在64位模式下,似乎主要的性能优势来自

    1. F#内联测试lambda
    2. 使用尾调用的F#(对于尾部调用杀死性能的32位不适用)
    3. 我们看到F#数据管道步骤没有内联,它是内联的数据管道构建代码​​。然而,这似乎带来了一些性能上的好处。也许是因为抖动更容易获得信息?

      为了提高C#管道的性能,似乎我需要构建我的C#代码,以便抖动虚拟化并内联调用。抖动具有这些功能,但为什么它们不适用?

      我是否可以构建我的F#代码,以便尾部调用可以被内联的虚拟化?

      完整的F#控制台程序:

      module TrivialStream =
        // A very simple push stream
        type Receiver<'T> = 'T            -> unit
        type Stream<'T>   = Receiver<'T>  -> unit
      
        module Details =
          module Loop =
            let rec range s e r i = if i <= e then r i; range s e r (i + s)
      
        open Details
      
        let inline range b s e : Stream<int> =
          fun r -> Loop.range s e r b
      
        let inline filter (f : 'T -> bool) (s : Stream<'T>) : Stream<'T> =
          fun r -> s (fun v -> if f v then r v)
      
        let inline map (m : 'T -> 'U) (s : Stream<'T>) : Stream<'U> =
          fun r -> s (fun v -> r (m v))
      
        let inline sum (s : Stream<'T>) : 'T =
          let mutable ss = LanguagePrimitives.GenericZero
          s (fun v -> ss <- ss + v)
          ss
      
      module PerformanceTests =
        open System
        open System.Diagnostics
        open System.IO
        open System.Linq
        open TrivialStreams
      
        let now =
          let sw = Stopwatch ()
          sw.Start ()
          fun () -> sw.ElapsedMilliseconds
      
        let time n a =
          let inline cc i       = GC.CollectionCount i
      
          let v                 = a ()
      
          GC.Collect (2, GCCollectionMode.Forced, true)
      
          let bcc0, bcc1, bcc2  = cc 0, cc 1, cc 2
          let b                 = now ()
      
          for i in 1..n do
            a () |> ignore
      
          let e = now ()
          let ecc0, ecc1, ecc2  = cc 0, cc 1, cc 2
      
          v, (e - b), ecc0 - bcc0, ecc1 - bcc1, ecc2 - bcc2
      
        let trivialTest n =
          TrivialStream.range       0 1 n
          |> TrivialStream.map      int64
          |> TrivialStream.filter   (fun v -> v &&& 1L = 0L)
          |> TrivialStream.map      ((+) 1L)
          |> TrivialStream.sum
      
        let trivialTestCs n =
          Stream
            .Range(0,1,n)
            .Map(fun v -> int64 v)
            .Filter(fun v -> v &&& 1L = 0L)
            .Map(fun v -> v + 1L)
            .Sum()
      
        let linqTest n =
          Enumerable
            .Range(0, n + 1)
            .Select(fun v -> int64 v)
            .Where(fun v -> v &&& 1L = 0L)
            .Select(fun v -> v + 1L)
            .Sum()
      
        let imperativeTest n =
          let rec loop s i =
            if i >= 0L then
              if i &&& 1L = 0L then
                loop (s + i + 1L) (i - 1L)
              else
                loop s (i - 1L)
            else
              s
          loop 0L (int64 n)
      
        let test () =
          printfn "Running performance tests..."
      
          let testCases =
            [|
              "imperative"      , imperativeTest
              "trivialpush"     , trivialTest
              "trivialpush(C#)" , trivialTestCs
              "linq"            , linqTest
            |]
      
          do
            // Just in case tiered compilation is activated on dotnet core 2.1+
            let warmups = 100
            printfn "Warming up..."
            for name, a in testCases do
              time warmups (fun () -> a warmups) |> ignore
      
          let total   = 100000000
          let outers =
            [|
              10
              1000
              1000000
            |]
          for outer in outers do
            let inner = total / outer
            for name, a in testCases do
              printfn "Running %s with total=%d, outer=%d, inner=%d ..." name total outer inner
              let v, ms, cc0, cc1, cc2 = time outer (fun () -> a inner)
              printfn "  ... %d ms, cc0=%d, cc1=%d, cc2=%d, result=%A" ms cc0 cc1 cc2 v
      
          printfn "Performance tests completed"
      
      [<EntryPoint>]
      let main argv =
        PerformanceTests.test ()
        0
      

      完整的C#库:

      namespace TrivialStreams
      {
        using System;
      
        public delegate void Receiver<in T>(T v);
        public delegate void Stream<out T>(Receiver<T> r);
      
        public static class Stream
        {
          public static Stream<int> Range(int b, int s, int e) => 
            r =>
              {
                for(var i = 0; i <= e; i += s)
                {
                  r(i);
                }
              };
      
          public static Stream<T> Filter<T>(this Stream<T> t, Func<T, bool> f) =>
            r => t(v => 
              {
                if (f(v)) r(v);
              });
      
          public static Stream<U> Map<T, U>(this Stream<T> t, Func<T, U> m) =>
            r => t(v => r(m(v)));
      
          public static long Sum(this Stream<long> t)
          {
            var sum = 0L;
      
            t(v => sum += v);
      
            return sum;
          }
        }
      }
      

1 个答案:

答案 0 :(得分:6)

F#编译器有时会在没有显式指令的情况下内联函数。您可以使用[<MethodImpl(MethodImplOptions.NoInlining)>]注释函数以防止这种情况。

像这样更新TrivialStream

open System.Runtime.CompilerServices

[<MethodImpl(MethodImplOptions.NoInlining)>]
let range b s e : Stream<int> =
  fun r -> Loop.range s e r b

[<MethodImpl(MethodImplOptions.NoInlining)>]
let filter (f : 'T -> bool) (s : Stream<'T>) : Stream<'T> =
  fun r -> s (fun v -> if f v then r v)

[<MethodImpl(MethodImplOptions.NoInlining)>]
let map (m : 'T -> 'U) (s : Stream<'T>) : Stream<'U> =
  fun r -> s (fun v -> r (m v))

[<MethodImpl(MethodImplOptions.NoInlining)>]
let sum (s : Stream<'T>) : 'T =
  let mutable ss = LanguagePrimitives.GenericZero
  s (fun v -> ss <- ss + v)
  ss

然后像这样更新测试本身:

open System.Runtime.CompilerServices

[<MethodImpl(MethodImplOptions.NoInlining)>]
let parseToInt64 = int64

[<MethodImpl(MethodImplOptions.NoInlining)>]
let filterImpl = fun v -> v &&& 1L = 0L

[<MethodImpl(MethodImplOptions.NoInlining)>]
let mapImpl = ((+) 1L)

let trivialTest n =

  TrivialStream.range       0 1 n
  |> TrivialStream.map      parseToInt64
  |> TrivialStream.filter   filterImpl
  |> TrivialStream.map      mapImpl
  |> TrivialStream.sum

当以32位应用程序运行时,这将导致F#运行,实际上比C#版本慢 。对于32位版本的尾部调用,还有一些其他奇怪的行为。

对于64位版本,这些更改使F#和C#版本之间的误差不超过15%。

如果将F#ReceiverStream交换为C#委托人(或仅交换Action<'t>Action<Action<'t>>),则两者的性能大致相当,因此我怀疑正在使用FSharpFunc进行其他优化。

  open TrivialStreams
  // A very simple push stream
  //type Receiver<'T> = 'T            -> unit
  //type Stream<'T>   = Receiver<'T>  -> unit

  module Details =
    module Loop =
      let rec range s e (r:Receiver<'t> ) i = if i <= e then r.Invoke i; range s e r (i + s)

  open Details
  open System.Runtime.CompilerServices

  [<MethodImpl(MethodImplOptions.NoInlining)>]
  let range b s e =
    Stream<'t>(fun r -> (Loop.range s e r b))

  [<MethodImpl(MethodImplOptions.NoInlining)>]
  let filter f (s : Stream<'T>) =
    Stream<'T>(fun r -> s.Invoke (fun v -> if f v then r.Invoke v))

  [<MethodImpl(MethodImplOptions.NoInlining)>]
  let map m (s : Stream<'T>) =
    Stream<'U>(fun r -> s.Invoke (fun v -> r.Invoke (m v)))

  [<MethodImpl(MethodImplOptions.NoInlining)>]
  let sum (s : Stream<'T>) : 'T =
    let mutable ss = LanguagePrimitives.GenericZero
    s.Invoke (fun v -> ss <- ss + v)
    ss

通过使用[MethodImpl(MethodImplOptions.AggressiveInlining)]属性注释方法,可以将F#编译器优化的一小部分应用于C#,但这只是一个小小的改进。