我使用以下内容读入KML文件:
clinics = st_read(dsn = "Data/clinics-kml.kml","CLINICS")
但是,我的所有变量(坐标除外)都被归为Description
下的1列(见下面的链接)。
将变量分开的最佳方法是什么?或者,有没有办法正确导入KML文件以避免此问题? You may view the screenshot of the problem here.
答案 0 :(得分:1)
问题(或可能不是问题)是 Description 列有一个html表作为每个观察值的字符串。如果您想解析该html字符串并获得漂亮的表格(例如在创建交互式网络地图时),那很好。但是,如果您只想要内部数据,那可能会很头疼。
因此,可以按照以下步骤在R中完成所有过程:
所有代码均已注释,如下所示:
library(tidyverse)
library(sf)
library(mapview)
library(rvest)
library(httr)
# 1) Download the kml file
moh_chas_clinics <- GET("https://data.gov.sg/dataset/31e92629-980d-4672-af33-cec147c18102/download",
write_disk(here::here("moh_chas_clinics.zip"), overwrite = TRUE))
# 2) Unzip the downloaded zip file
unzip(here::here("moh_chas_clinics.zip"))
# 3) Read the KML file as a Spatial object
moh_chas_clinics <- read_sf(here::here("chas-clinics-kml.kml"))
# Watch data
moh_chas_clinics %>%
glimpse()
# See map
mapview(moh_chas_clinics)
# 4) Get the attributes for each observation
# Option a) Using a simple lapply
attributes <- lapply(X = 1:nrow(moh_chas_clinics),
FUN = function(x) {
moh_chas_clinics %>%
slice(x) %>%
pull(Description) %>%
read_html() %>%
html_node("table") %>%
html_table(header = TRUE, trim = TRUE, dec = ".", fill = TRUE) %>%
as_tibble(.name_repair = ~ make.names(c("Attribute", "Value"))) %>%
pivot_wider(names_from = Attribute, values_from = Value)
})
# Option b) Using a Parallel lapply (faster)
future::plan("multisession")
attributes <- future.apply::future_lapply(X = 1:nrow(moh_chas_clinics),
FUN = function(x) {
moh_chas_clinics %>%
slice(x) %>%
pull(Description) %>%
read_html() %>%
html_node("table") %>%
html_table(header = TRUE, trim = TRUE, dec = ".", fill = TRUE) %>%
as_tibble(.name_repair = ~ make.names(c("Attribute", "Value"))) %>%
pivot_wider(names_from = Attribute, values_from = Value)
})
# 5) Bind the attributes to each observation as new columns
moh_chas_clinics_attr <-
moh_chas_clinics %>%
bind_cols(bind_rows(attributes)) %>%
select(-Description)
# Watch new data
moh_chas_clinics_attr %>%
glimpse()
# New map
mapview(moh_chas_clinics_attr,
zcol = "CLINIC_PROGRAMME_CODE",
layer.name = "Clinic Programme Code")
以最终地图为例,显示一个点的所有属性并用“诊所程序代码”进行着色:
答案 1 :(得分:0)
通过使用QGIS将KML转换为SHP,找出了另一种方法。然后将其作为SHP读入R。