刚开始使用R并且会在这个问题上重视您的意见。
我想要实现的目标是:
源数据具有以下格式:
dat = structure(list(TimeStamp = c(0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L,
4L), NID = c(0L, 1L, 2L, 3L, 4L, 0L, 1L, 2L, 3L, 4L, 0L, 1L,
2L, 3L, 4L, 0L, 1L, 2L, 3L, 4L, 0L, 1L, 2L, 3L, 4L), NumberSynapsesTotal = c(2L,
2L, 3L, 2L, 4L, 2L, 2L, 3L, 2L, 4L, 2L, 2L, 3L, 2L, 4L, 2L, 2L,
3L, 2L, 4L, 2L, 2L, 3L, 2L, 4L), NumberActiveSynapses = c(1L,
2L, 1L, 2L, 3L, 1L, 2L, 1L, 1L, 0L, 1L, 2L, 1L, 1L, 0L, 1L, 2L,
1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L), Fires = c(1L, 1L, 1L, 1L, 0L,
1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L,
0L, 1L, 0L, 0L)), row.names = c(NA, 25L), class = "data.frame")
我尝试应用过滤器,但它显示了那些" ID" s的数据子集,其中属性的值为1" Fired" (没有轴的所有值):
dat %>%
filter(dat$Fires == 1) %>%
ggplot(aes(x = dat$TimeStamp[dat$Fires == 1], y = dat$NID[dat$Fires == 1])) +
geom_point()
或者,我获得属性的所有现有值" Timestamp"和" NID"使用以下代码:
plot(dat$TimeStamp, dat$NID,
xlab = "Time", ylab = "Neuron ID")
title(main = "Fire Trace Plot")
因此图片以下列方式显示:
最后,从下面的评论中我将代码修改为:
ggplot(dat, aes(x = TimeStamp, y = NID) , xlab = "Time", ylab ="Neuron
ID") +
geom_blank() +
geom_point(dat = filter(dat) +
#title(main = "Fire Trace Plot")
scale_x_continuous(breaks = F_int_time_breaks(1) )
我应该在一个地块上建立两个图表吗? 谢谢!
答案 0 :(得分:1)
使用ggplot2
,永远不要在data$
内使用aes()
,只需使用列名。同样,dplyr
等filter
函数不应与data$
一起使用 - 他们知道要查看列的数据框。
我认为您希望使用完整数据构建ggplot
,因此将轴设置为覆盖整个数据(我们通过添加geom_blank()
图层强制执行此操作),并且它只是点层应该是子集:
# create some sample data (it is nice if you provide this in the question)
dat = expand.grid(Timestamp = 0:9, NID = 0:3)
dat$Fires = ifelse(dat$NID == 2, 1, 0)
# make the plot
ggplot(dat, aes(x = Timestamp, y = NID)) +
geom_blank() +
geom_point(dat = filter(dat, Fires == 1))
答案 1 :(得分:0)
代码应如下所示(请参见注释中的原因):
F_int_time_breaks<- function(k) {
step <- k
function(y) seq(floor(min(y)), ceiling(max(y)), by = step)
}
ggplot(dat, aes(x = TimeStamp, y = NID) , xlab = "Time", ylab ="Neuron ID") +
geom_blank() +
geom_point(dat = subset(dat, Fires == 1)) +
#title(main = "Fire Trace Plot")
scale_x_continuous(breaks = F_int_time_breaks(1) )