我这里有一个代码可以检测激光,但我在不同光线条件下遇到问题。所以我想我可以解决它,如果我添加一个代码,检查该光是否是一个圆。
问题是我不知道如何在这里应用它。这是激光在面罩中的样子。
我希望你能帮我解决我的代码。
这是我的代码:
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) convert from bgr to hsv color space
lower = np.array([0,0,255]) #range of laser light
upper = np.array([255, 255, 255])
mask = cv2.inRange(hsv, lower, upper)
maskcopy = mask.copy()
circles = cv2.HoughCircles(maskcopy, cv2.HOUGH_GRADIENT, 1, 500,
param1 = 20, param2 = 10,
minRadius = 1, maxRadius = 3)
_,cont,_ = cv2.findContours(maskcopy, cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
if circles is not None:
circles = np.round(circles[0,:]).astype('int')
for(x,y,r) in circles:
cv2.circle(frame, (x,y), r, (0,255,0),4)
cv2.imshow('mask', mask)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
截图:
答案 0 :(得分:1)
我尝试了类似的东西,对我来说最好的解决方案是:
(我将您的图像保存到我的硬盘并制作了示例代码)
import cv2
import math
img = cv2.imread('laser.jpg')
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray_image,100,255,cv2.THRESH_BINARY)
im2, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
area = sorted(contours, key=cv2.contourArea, reverse=True)
contour = area[0]
(x,y),radius = cv2.minEnclosingCircle(contour)
radius = int(radius)
area = cv2.contourArea(contour)
circ = 4*area/(math.pi*(radius*2)**2)
cv2.drawContours(img, [contour], 0, (0,255,0), 2)
cv2.imshow('img', img)
print(circ)
所以我的想法是用cv2.findContours
(激光点)找到你的轮廓并用它包围圆圈,这样你就可以得到半径,然后得到轮廓为cv2.contourArea
的区域并检查它的圆形度使用公式circ = 4*area/(math.pi*(radius*2)**2)
。完美的citrcle将返回1的结果。它越是0,你的轮廓越少“圆周”(在下面的图片中)。希望它有所帮助!
所以你的代码应该是这样的,它不会返回任何错误(尝试过它并且有效)
import cv2
import numpy as np
import math
cap = cv2.VideoCapture(0)
while True:
try:
ret, frame = cap.read()
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #convert from bgr to hsv color space
lower = np.array([0,0,255]) #range of laser light
upper = np.array([255, 255, 255])
mask = cv2.inRange(hsv, lower, upper)
im2, contours, hierarchy = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
area = sorted(contours, key=cv2.contourArea, reverse=True)
contour = area[0]
(x,y),radius = cv2.minEnclosingCircle(contour)
radius = int(radius)
area = cv2.contourArea(contour)
circ = 4*area/(math.pi*(radius*2)**2)
print(circ)
except:
pass
cv2.imshow('mask', mask)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
答案 1 :(得分:0)
我提出了一种采用不同方法的解决方案。
我的想法是创建一个圆圈,其中心位于蒙版白色区域的中心,半径等于蒙版白色区域宽度的一半。然后我检查这个圆圈与面具有多相似。
以下是代码:
white = np.where(mask>250) # you can also make it == 255
white = np.asarray(white)
minx = min(white[0])
maxx = max(white[0])
miny = min(white[1])
maxy = max(white[1])
radius = int((maxx-minx)/2)
cx = minx + radius
cy = miny + radius
black = mask.copy()
black[:,:]=0
cv2.circle(black, (cy,cx), radius, (255,255,255),-1)
diff = cv2.bitwise_xor(black, mask)
diffPercentage = len(diff>0)/diff.size
print (diffPercentage)
然后你必须拿出百分比阈值"类似"对你来说足够了。
上面的代码测试了从磁盘读取掩码,但视频只是一系列图像。没有您的网络摄像头输入我无法使用视频测试代码,但它应该像这样工作:
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower = np.array([0,0,255]) #range of laser light
upper = np.array([255, 255, 255])
mask = cv2.inRange(hsv, lower, upper)
white = np.where(mask>250) # you can also make it == 255
white = np.asarray(white)
minx = min(white[0])
maxx = max(white[0])
miny = min(white[1])
maxy = max(white[1])
radius = int((maxx-minx)/2)
cx = minx + radius
cy = miny + radius
black = mask.copy()
black[:,:]=0
cv2.circle(black, (cy,cx), radius, (255,255,255),-1)
diff = cv2.bitwise_xor(black, mask)
diffPercentage = len(diff>0)/diff.size
print (diffPercentage)
cv2.imshow('mask', mask)
cvw.imshow('diff', diff)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()